Skip to main content

The Filter Bubble in Social Media Communication: How Users Evaluate Personalized Information in the Facebook Newsfeed

Abstract

More and more often companies use algorithms to provide highly personalized and targeted recommendations to online users. Usually, algorithms find those recommendations by analyzing past (shopping) behavior. However, this past-oriented approach has not been uncriticized as it leads to a so-called filter bubble. This article sheds light to the filter bubble focusing on users’ perception and reaction. In an online survey 120 Facebook users have been asked about their newsfeeds. The results show that persons intensively using social media perceive the filter bubble more often than those sporadically using social media in their daily life. Moreover, the education level as well as the interaction between relevance and intensity of Facebook usage have a significant influence on the filter bubble perception. The perception itself influences the attitude towards the filter bubble. However, in our model no significant relation has been found between attitudes towards the filter bubble and behavioral reaction. Finally, implications are deviated.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aaker JL, Brumbaugh AM, Grier SA (2000) Nontarget markets and viewer distinctiveness: The impact of target marketing on advertising attitudes. J Consum Psychol 9(3):127–140

    CrossRef  Google Scholar 

  • Ajzen I (1985) From intentions to actions: a theory of planned behavior. In: Kuhl J, Beckman J (eds) Action-control: from cognition to behaviour. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Allyson V, Wukovitz L (2013) Using the filter bubble to create a teachable moment: a case study utilizing online personalization to engage students in information literacy instruction. Pennsylvania Libraries 1(1):24–34

    CrossRef  Google Scholar 

  • Amazon (no year): Über Empfehlungen, https://www.amazon.de/gp/help/customer/display.html/ref=hp_left_v4_sib?ie=UTF8&nodeId=201483710, [download 26. Mai 2017]

  • Angwin J (2010) The web’s new gold mine: your secrets, via https://www.wsj.com/articles/SB10001424052748703940904575395073512989404, [download 18 Mai 2017]

  • ARD-/ZDF-Onlinestudie (2016): Onlinenutzung, via http://www.ard-zdf-onlinestudie.de/index.php?id=560 (28 Sept 2017)

  • Bakshy E, Messing S, Adamic LA (2015) Exposure to ideologically diverse news and opinion on Facebook. Science 348(6239):1130–1132

    CrossRef  Google Scholar 

  • Behrens C (2016) Der Mythos von der Filterblase, Süddeutsche Zeitung online, via http://www.sueddeutsche.de/wissen/erkenntnistheorieder-mythos-von-der-filterblase-1.3254772 (download 17 Juli 2017)

  • Birkbak A, Carlsen HB (2016) The World of Edgerank: Rhetorical Justifications of Facebook’s News Feed Algorithm, Computational Culture (5), Special Issue on Rhetoric and Computation, no pages

    Google Scholar 

  • Bliemel F, Theobald A (2002): Marktforschung im Internet. In: Weiber R (Hrsg.) Handbuch Electronic Business. Informationstechnologien—Electronic Commerce—Geschäftsprozesse, 2. Aufl., Wiesbaden: Gabler, pp 283–304

    Google Scholar 

  • Bozdag E (2013) Bias in algorithmic filtering and personalization. Ethics Inf Technol 15(3):209–227

    CrossRef  Google Scholar 

  • Bozdag E, Timmermans JFC (2001) Values in the filter bubble Ethics of Personalization Algorithms in Cloud Computing. In: Proceedings 1st International Workshop on Values in Design—Building Bridges between RE, HCI and Ethics, Lisbon, Portugal, 6 Sept 2011

    Google Scholar 

  • Bozdag E, Gao Q, Houben GJ, Warnier M (2014) Does Offline Political Segregation Affect the Filter Bubble? An Empirical Analysis of Information Diversity for Dutch and Turkish Twitter Users, Computers in Human Behavior 41:405–415

    Google Scholar 

  • Bozdag E, van den Hoven J (2015) Breaking the filter bubble: democracy and design. Ethics Inf Technol 17(4):249–265

    CrossRef  Google Scholar 

  • Bucher T (2012) Want to be in the top? The algorithmic power and the threat of invisibility on facebook. New Media Soc 14(7):1164–1180

    CrossRef  Google Scholar 

  • Bucher T (2017) The algorithmic imaginary: exploring the ordinary affects of facebook algorithm. Inf Commun Soc 20(1):30–40

    CrossRef  Google Scholar 

  • Budde L (2013) Der Tod des EdgeRank: Facebook integriert 100.000 neue Rankingfaktoren, via http://t3n.de/news/facebook-edgerank-nachfolger-488185/ (download 28 Mai 2017)

  • Caruso JB, Kvavik RB (2005) ECAR study of students and information technology, 2005: convenience, connection, control, and learning. EDUCAUSE Center for Applied Research, via https://net.educause.edu/ir/library/pdf/ERS0506/ecm0506.pdf (download 22 Juni 2017)

  • Davis D (2011) Relevancy redacted: web-scale discovery and the “filter bubble”. In: Proceedings of the Charleston Library Conference, pp 556–562

    Google Scholar 

  • Emmer M, Strippel C (2015) Stichprobenziehung für Online-Inhaltsanalysen: Suchmaschinen und Filter Bubbles. In: Maireder A, Ausserhofer J, Schumann C, Taddicken M (Hrsg.) Digitale Methoden in der Kommunikationswissenschaft, Bd. 2, Berlin: ohne Verlag, pp 274–300

    Google Scholar 

  • Eslami M, Rickman A, Vaccaro K, Aleyasen A, Vuong A, Karahalios K, Hamilton K, Sandvig C (2015) I always assumed that I wasn’t really that close to [her]: Reasoning about Invisible Algorithms in News Feeds. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul: ACM, S. pp 153–162

    Google Scholar 

  • Flaxman S, Goel S, Rao JM (2016) Filter bubble, echo chambers, and online news consumption. Public Opin Q 80:298–320

    CrossRef  Google Scholar 

  • Fridgen M, Schackmann J, Volkert S (2000) Preference based customer models for electronic banking. In: Hansen HR, Bichler M, Mahrer H (Hrsg.) Proceedings of the 8th european conference on information systems ECIS 2000, Bd. 2, Wien: Wirtschaftsuniversität, pp 819–825

    Google Scholar 

  • Gadatsch A (2016) Einfluss der Digitalisierung auf die Zukunft der Arbeit. In: Gadatsch A, Krupp A, Wiesehahn A (Hrsg.) Controlling und Leadership—Konzepte, Erfahrungen, Entwicklungen. Springer, Wiesbaden, pp 193–213

    Google Scholar 

  • Gottron T, Schwagereit F (2016) The impact of the filter bubble—a simulation based framework for measuring personalisation macro effects in online communities. arXiv preprint aXiv:1612.06551. https://pdfs.semanticscholar.org/5308/b193f5097ac491852d65d8391b7af5cbc0a0.pdf (download 10 Apr 2017)

  • Hannak A, Sapiezynski P, Kakhki AM, Krishnamurthy B, Lazer D, Mislove A, Wilson C (2013) Measuring personalization of web search. In: WWW 2013, proceedings of the 22nd international conference on world wide web, international world wide web conferences steering committee, pp 527–538

    Google Scholar 

  • Heinzmann P (2002) Internet—Die Kommunikationsplattform des 21. Jahrhunderts. In: Weiber R (Hrsg.) Handbuch Electronic Business. Informationstechnologien—Electronic Commerce—Geschäftsprozesse, 2. Aufl., Wiesbaden, Gabler Verlag, pp 1–40

    Google Scholar 

  • Holone H (2016) The filter bubble and its effect on online personal health information. Croatian Med J 57(3):298–301

    CrossRef  Google Scholar 

  • Hootsuite (2017) Digital in 2017, Profile of Facebook-users, slide 49, via https://wearesocial.com/special-reports/digital-in-2017-global—overview (download 28. September 2017)

  • Jürgens P, Stark B, Magin M (2015) Messung von Personalisierung in computervermittelter Kommunikation. In: Maireder A, Ausser-hofer J, Schumann C, Taddicken M (Hrsg.) Digitale Methoden in der Kommunikationswissenschaft, Bd. 2, Berlin: ohne Verlag, pp 251– 270

    Google Scholar 

  • Kollmann T (2016) E-Business. Grundlagen elektronischer Geschäftsprozesse in der Digitalen Wirtschaft, 6. Aufl., Wiesbaden, Gabler Verlag

    Google Scholar 

  • Klug K (2018) Vom Nischentrend zum Lebensstil: Der Einfluss des Lebensgefühls auf das Konsumentenverhalten. Wies- baden, SpringerGabler

    CrossRef  Google Scholar 

  • Liao QV, Fu WT (2013) Beyond the filter bubble: interactive effects of perceived threat and topic involvement on selective exposure to information. In: CHI 2013 proceedings of the 2013 SIGCHI conference on human factors in computing systems, pp 2359–2368

    Google Scholar 

  • Maccatrozzo V (2012) Burst the filter bubble: using semantic web to enable serendipity. In: ISWC 2012 proceedings of the semantic web, pp 391–398

    Google Scholar 

  • Mahrt M (2014) Vom Lagerfeuer zur filter bubble—Konsequenzen der Nutzung digitaler Medien für die Integrationsfunktion von Medien. In: Kleinen-von Königslöw K, Förster K (Hrsg.) Medienkonvergenz und Medienkomplementarität aus Rezeptions- und Wirkungsperspek- tive, nomos pp 127–146

    Google Scholar 

  • Matt C, Benlian A, Hess T, Weiß C (2014) Escaping from the filter bubble? The effects of novelty and serendipity on users’ evaluations of online recommendations. In: ICIS 2014 proceedings of the 35th international conference on information systems, Auckland, New Zealand, pp 1503–1520

    Google Scholar 

  • Mertens P, Höhl M (1999) Wie lernt der Computer den Menschen kennen?. Bestandsaufnahme und Experimente zur Benutzermodellie- rung in der Wirtschaftsinformatik. In: Scheer AW, Nüttgens M (Hrsg.) Electronic Business Engineering. Proceedings zur 4. Internatio- nale Tagung Wirtschaftsinformatik 1999, Heidelberg: Physica-Verlag Heidelberg, pp 25–49

    Google Scholar 

  • Mitchell A, Gottfried J, Berthel M, Shearer E (2016) The modern news consumer. News attitudes and practices in the digital era, via http://www.journalism.org/2016/07/07/the-modern-news-consumer/ (download 21 Mai 2017)

  • Nagulendra S, Vassileva J (2014) Understanding and controlling the filter bubble through interactive visualization: a user study. In: HT 2014 Proceedings of the 25th ACM conference on hypertext and social media, pp 107–115

    Google Scholar 

  • Newman N, Fletcher R, Kalogeropoulos A, Levy DAL, Nielsen RK (2017) Reuters digital news report 2017, via https://reuter-sinstitute.politics.ox.ac.uk/sites/default/files/Digital%20News%20Report%202017%20web_0.pdf (doawnload 24 Juli 2017)

  • Nguyen TT, Hui PM, Harper FM, Terveen L, Konstan JA (2014) Exploring the filter bubble: the effect of using recommender systems on content diversity. In: WWW 2014 proceedings of the 23rd international conference on World wide web, pp 677–686

    Google Scholar 

  • Oh E, Reeves TC (2014) Generational differences and the integration of technology in learning, instruction, and performance. In: Spector JM, Merrill MD, Elen J, Bishop ML (eds) Handbook of research on educational communications and technology. Springer Science + Business Media, New York, pp 819–828

    CrossRef  Google Scholar 

  • Ovens C (2017) Filterblasen—Ausgangspunkte einer neuen fremdverschuldeten Unmündigkeit? In: Schmidt JH, Kinder-Kurlanda K, Steg-bauer C, Zurawski N (Hrsg.) Algorithmen, Kommunikation und Gesellschaft, Sonderausgabe von kommunikation@gesellschaft, 18., Beitrag 7

    Google Scholar 

  • Pagel P (2017) Die Digitalisierung der Welt. Wirtschaftsinformatik und Management 9(1):3

    CrossRef  Google Scholar 

  • Pariser E (2011) The filter bubble. What the internet is hiding from you. The Penguin Press, New York

    Google Scholar 

  • Piller F, Zanner S (2001) Mass Customization und Personalisierung im Electronic Business. Das Wirtschaftsstudium (WISU) 30(1):88–96

    Google Scholar 

  • Rader E, Gray R (2015) Understanding User Beliefs about Algorithmic Curation in the Facebook News Feed. In: Proceedings of the 33rd annual ACM conference on human factors in computing systems, Seoul: ACM, pp 173–182

    Google Scholar 

  • Reichwald R, Piller FT (2002) Mass Customization-Konzepte im Electronic Business. In: Rolf Weiber (Hrsg.) Handbuch Electronic Business. Informationstechnologien—Electronic Commerce –Geschäftsprozesse, 2. Aufl., Wiesbaden: Gabler, pp 469–494

    Google Scholar 

  • Resnick P, Garrett RK, Kriplean T, Munson SA, Stroud NJ (2013) Bursting your (filter) bubble: strategies for promoting diverse exposure. In: CSCW 2013 Proceedings of the 2013 conference on computer supported cooperative work companion, pp 95–100

    Google Scholar 

  • Schackmann J, Schü J (2001) Personalisierte Portale. Wirtschaftsinformatik 43(6):623–625

    CrossRef  Google Scholar 

  • Schwertler W (2006) Strategisches Affinity-Group-Management—Wettbewerbsvorteile durch ein neues Zielgruppenverständnis. Springer, Wiesbaden

    Google Scholar 

  • Shahd M, Grimm F, Weber M (2016) Jedes dritte Unternehmen nutzt Big Data, via https://www.bitkom.org/Presse/Presseinformation/Jedes-dritte-Unternehmen-nutzt-Big-Data.html (download 20. Juni 2017)

  • Sontos HC, Varnum MEW, Grossmann I (2017) Global increases in individualism. Psychol Sci Online First. https://doi.org/10.1177/0956797617700622

    CrossRef  Google Scholar 

  • Smith NC, Cooper-Martin E (1997) Ethics and target marketing: the role of product harm and consumer vulnerability. J Market 61(3):1–20

    CrossRef  Google Scholar 

  • Stalder F, Mayer C (2009) Der zweite Index. Suchmaschinen, Personalisierung und Überwachung. In: Becker K, Stalder F (eds) Deep Search. Studienverlag, Politik des Suchens jenseits von Google, Innsbruck, pp 112–131

    Google Scholar 

  • Vor dem Esche J, Henning-Thurau T (2014) German digitalization consumer report, digitalization think lab. Marketing Center Münster, Roland Berger Strategy Consultants

    Google Scholar 

  • Weiber R, Krämer T (2002) Paradoxien des Electronic Business und empirische Befunde. In: Weiber R (Hrsg.) Handbuch Electronic Business. Informationstechnologien—Electronic Commerce—Geschäftsprozesse, 2. Aufl., Wiesbaden, Gabler Verlag, pp 181–210

    Google Scholar 

  • Wirtz BW (2016) Electronic business, 5th edn. Gabler Verlag, Wiesbaden

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Klug .

Editor information

Editors and Affiliations

Appendix

Appendix

See Table 4.

Table 4 Overview of filter bubble studies

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klug, K., Strang, C. (2019). The Filter Bubble in Social Media Communication: How Users Evaluate Personalized Information in the Facebook Newsfeed. In: Osburg, T., Heinecke, S. (eds) Media Trust in a Digital World. Springer, Cham. https://doi.org/10.1007/978-3-030-30774-5_12

Download citation