Skip to main content

Mechanisms of Environmental and Occupational Carcinogenesis

  • Chapter
  • First Online:
Occupational Cancers

Abstract

Carcinogenesis is a complex, multistep process, involving accumulation of genetic and epigenetic alterations that confer a growth and/or survival advantage, through which cells gradually achieve unchecked growth and eventually become fully malignant and invasive. There are numerous sources of physical, chemical, and biological exposures that stem from endogenous and exogenous sources—including occupational settings—that can induce such genetic and epigenetic alterations. This damage is repaired through a high-fidelity DNA repair process that operates through multiple pathways, although the system is imperfect and varies by repair mechanism, potentially resulting in incorporation of DNA damage and epigenetic alterations. This chapter provides an introduction to mechanisms of environmental and occupational carcinogenesis and DNA repair, and provides examples of physical and chemical carcinogens and epigenetic effectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  3. Weinberg RA. The biology of cancer. New York: Garland Science; 2007.

    Google Scholar 

  4. Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971;68(4):820–3.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Comings DE. A general theory of carcinogenesis. Proc Natl Acad Sci U S A. 1973;70(12):3324–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Berger AH, Knudson AG, Pandolfi PP. A continuum model for tumour suppression. Nature. 2011;476(7359):163–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer. 1953;6(5):963–8.

    Article  CAS  PubMed  Google Scholar 

  8. Braakhuis BJ, Tabor MP, Kummer JA, Leemans CR, Brakenhoff RH. A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res. 2003;63(8):1727–30.

    CAS  PubMed  Google Scholar 

  9. Weston A, Harris C. Chemical carcinogensis. In: Bast RJ, Kufe D, Pollock R, Weichselbaum M, Holland J, Frei E, editors. Holland-Frei cancer medicine. 5th ed. Hamilton: BC Decker; 2000.

    Google Scholar 

  10. Vamvakas S, Vock EH, Lutz WK. On the role of DNA double-strand breaks in toxicity and carcinogenesis. Crit Rev Toxicol. 1997;27(2):155–74.

    Article  CAS  PubMed  Google Scholar 

  11. Yassi A, Kjellstrom T, de Kok T, Guidotti TL. Basic environmental health. New York: Oxford University Press; 2001.

    Book  Google Scholar 

  12. Reisz JA, Bansal N, Qian J, Zhao W, Furdui CM. Effects of ionizing radiation on biological molecules—mechanisms of damage and emerging methods of detection. Antioxid Redox Signal. 2014;21(2):260–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Desouky O, Ding N, Zhou G. Targeted and non-targeted effects of ionizing radiation. J Radiati Res Appl Sci. 2015;8(2):247–54.

    Article  CAS  Google Scholar 

  14. Peak JG, Peak MJ, MacCoss M. DNA breakage caused by 334-nm ultraviolet light is enhanced by naturally occurring nucleic acid components and nucleotide coenzymes. Photochem Photobiol. 1984;39(5):713–6.

    Article  CAS  PubMed  Google Scholar 

  15. Walrant P, Santus R. N-formyl-kynurenine, a tryptophan photooxidation product, as a photodynamic sensitizer. Photochem Photobiol. 1974;19(6):411–7.

    Article  CAS  PubMed  Google Scholar 

  16. McCormick JP, Fischer JR, Pachlatko JP, Eisenstark A. Characterization of a cell-lethal product from the photooxidation of tryptophan: hydrogen peroxide. Science. 1976;191(4226):468–9.

    Article  CAS  PubMed  Google Scholar 

  17. Krasnovsky AA Jr. Photoluminescence of singlet oxygen in pigment solutions. Photochem Photobiol. 1979;29:29–36.

    Article  CAS  Google Scholar 

  18. Yakymenko I, Tsybulin O, Sidorik E, Henshel D, Kyrylenko O, Kyrylenko S. Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagn Biol Med. 2016;35(2):186–202.

    Article  CAS  PubMed  Google Scholar 

  19. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Non-ionizing radiation, part 2: radiofrequency electromagnetic fields. IARC Monogr Eval Carcinog Risks Hum. 2013;102(Pt 2):1–460.

    PubMed Central  Google Scholar 

  20. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Non-ionizing radiation, part 1: static and extremely low-frequency (ELF) electric and magnetic fields. IARC Monogr Eval Carcinog Risks Hum. 2002;80:1–395.

    PubMed Central  Google Scholar 

  21. Phillips JL, Singh NP, Lai H. Electromagnetic fields and DNA damage. Pathophysiology. 2009;16(2–3):79–88.

    Article  CAS  PubMed  Google Scholar 

  22. Conney AH, Poirier MC, Surh YJ, Kadlubar FF. Elizabeth Cavert Miller: May 2, 1920-October 14, 1987; James A. Miller: May 27, 1915-December 24, 2000. Biographical Memoirs; National Academy of Sciences, vol. 90. Washington, DC: National Academies Press; 2009. p. 1–38.

    Google Scholar 

  23. NTP. Report on carcinogens. 12th ed. Research Triangle: U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program; 2011.

    Google Scholar 

  24. Irigaray P, Belpomme D. Basic properties and molecular mechanisms of exogenous chemical carcinogens. Carcinogenesis. 2010;31(2):135–48.

    Article  CAS  PubMed  Google Scholar 

  25. Williams D, Foye W, Lemke T, editors. Foye’s principles of medicinal chemistry. 6th ed. Baltimore: Lippincott Williams & Wilkins; 2007.

    Google Scholar 

  26. Martelli A, Robbiano L, Gazzaniga GM, Brambilla G. Comparative study of DNA damage and repair induced by ten N-nitroso compounds in primary cultures of human and rat hepatocytes. Cancer Res. 1988;48(15):4144–52.

    CAS  PubMed  Google Scholar 

  27. Wiencke JK, McDowell ML, Bodell WJ. Molecular dosimetry of DNA adducts and sister chromatid exchanges in human lymphocytes treated with benzo[a]pyrene. Carcinogenesis. 1990;11(9):1497–502.

    Article  CAS  PubMed  Google Scholar 

  28. Vollhardt KPC, Schore NE. Organic chemistry: structure and function. 4th ed. New York: W.H. Freeman and Company; 2003.

    Google Scholar 

  29. Shrivastav N, Li D, Essigmann JM. Chemical biology of mutagenesis and DNA repair: cellular responses to DNA alkylation. Carcinogenesis. 2010;31(1):59–70.

    Article  CAS  PubMed  Google Scholar 

  30. Singer B. Sites in nucleic acids reacting with alkylating agents of differing carcinogenicity of mutagenicity. J Toxicol Environ Health. 1977;2(6):1279–95.

    Article  CAS  PubMed  Google Scholar 

  31. Gates KS. An overview of chemical processes that damage cellular DNA: spontaneous hydrolysis, alkylation, and reactions with radicals. Chem Res Toxicol. 2009;22(11):1747–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hlavin EM, Smeaton MB, Miller PS. Initiation of DNA interstrand cross-link repair in mammalian cells. Environ Mol Mutagen. 2010;51(6):604–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rothfuss A, Grompe M. Repair kinetics of genomic interstrand DNA cross-links: evidence for DNA double-strand break-dependent activation of the Fanconi anemia/BRCA pathway. Mol Cell Biol. 2004;24(1):123–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sczepanski JT, Jacobs AC, Van Houten B, Greenberg MM. Double-strand break formation during nucleotide excision repair of a DNA interstrand cross-link. Biochemistry. 2009;48(32):7565–7.

    Article  CAS  PubMed  Google Scholar 

  35. Wilson VL, Weston A, Manchester DK, et al. Alkyl and aryl carcinogen adducts detected in human peripheral lung. Carcinogenesis. 1989;10(11):2149–53.

    Article  CAS  PubMed  Google Scholar 

  36. van Schooten FJ, Hillebrand MJ, van Leeuwen FE, et al. Polycyclic aromatic hydrocarbon-DNA adducts in lung tissue from lung cancer patients. Carcinogenesis. 1990;11(9):1677–81.

    Article  PubMed  Google Scholar 

  37. Li D, Wang M, Dhingra K, Hittelman WN. Aromatic DNA adducts in adjacent tissues of breast cancer patients: clues to breast cancer etiology. Cancer Res. 1996;56(2):287–93.

    CAS  PubMed  Google Scholar 

  38. Pfohl-Leszkowicz A, Grosse Y, Carriere V, et al. High levels of DNA adducts in human colon are associated with colorectal cancer. Cancer Res. 1995;55(23):5611–6.

    CAS  PubMed  Google Scholar 

  39. Hamada K, Umemoto A, Kajikawa A, et al. Mucosa-specific DNA adducts in human small intestine: a comparison with the colon. Carcinogenesis. 1994;15(11):2677–80.

    Article  CAS  PubMed  Google Scholar 

  40. Wang M, Abbruzzese JL, Friess H, et al. DNA adducts in human pancreatic tissues and their potential role in carcinogenesis. Cancer Res. 1998;58(1):38–41.

    CAS  PubMed  Google Scholar 

  41. Lu AL, Li X, Gu Y, Wright PM, Chang DY. Repair of oxidative DNA damage: mechanisms and functions. Cell Biochem Biophys. 2001;35(2):141–70.

    Article  CAS  PubMed  Google Scholar 

  42. Klaunig JE, Wang Z, Pu X, Zhou S. Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicol Appl Pharmacol. 2011;254(2):86–99.

    Article  CAS  PubMed  Google Scholar 

  43. Kuchino Y, Mori F, Kasai H, et al. Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and at adjacent residues. Nature. 1987;327(6117):77–9.

    Article  CAS  PubMed  Google Scholar 

  44. Schiestl RH, Aubrecht J, Yap WY, Kandikonda S, Sidhom S. Polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin induce intrachromosomal recombination in vitro and in vivo. Cancer Res. 1997;57(19):4378–83.

    CAS  PubMed  Google Scholar 

  45. International Agency for Research on Cancer. Some metals and metallic compounds. IARC Monographs 1980;23.

    Google Scholar 

  46. International Agency for Research on Cancer. Cobalt in hard metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide. IARC Monogr Eval Carcinog Risks Hum. 2006;86:1–294.

    Google Scholar 

  47. Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 58. Lyon: International Agency for Research on Cancer; 1993.

    Google Scholar 

  48. Salnikow K, Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol. 2008;21(1):28–44.

    Article  PubMed  Google Scholar 

  49. Galanis A, Karapetsas A, Sandaltzopoulos R. Metal-induced carcinogenesis, oxidative stress and hypoxia signalling. Mutat Res. 2009;674(1–2):31–5.

    Article  CAS  PubMed  Google Scholar 

  50. Witkiewicz-Kucharczyk A, Bal W. Damage of zinc fingers in DNA repair proteins, a novel molecular mechanism in carcinogenesis. Toxicol Lett. 2006;162(1):29–42.

    Article  CAS  PubMed  Google Scholar 

  51. Barnes DE, Lindahl T. Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet. 2004;38:445–76.

    Article  CAS  PubMed  Google Scholar 

  52. Bertram JS. The molecular biology of cancer. Mol Asp Med. 2000;21(6):167–223.

    Article  CAS  Google Scholar 

  53. Swenberg JA, Lu K, Moeller BC, et al. Endogenous versus exogenous DNA adducts: their role in carcinogenesis, epidemiology, and risk assessment. Toxicol Sci. 2011;120(Suppl 1):S130–45.

    Article  CAS  PubMed  Google Scholar 

  54. Cavalieri EL, Rogan EG. Unbalanced metabolism of endogenous estrogens in the etiology and prevention of human cancer. J Steroid Biochem Mol Biol. 2011;125(3–5):169–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dianov GL, Parsons JL. Co-ordination of DNA single strand break repair. DNA Repair (Amst). 2007;6(4):454–60.

    Article  CAS  Google Scholar 

  56. Winters TA, Henner WD, Russell PS, McCullough A, Jorgensen TJ. Removal of 3′-phosphoglycolate from DNA strand-break damage in an oligonucleotide substrate by recombinant human apurinic/apyrimidinic endonuclease 1. Nucleic Acids Res. 1994;22(10):1866–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Martinez MC, Andriantsitohaina R. Reactive nitrogen species: molecular mechanisms and potential significance in health and disease. Antioxid Redox Signal. 2009;11(3):669–702.

    Article  CAS  PubMed  Google Scholar 

  58. Blair IA. Lipid hydroperoxide-mediated DNA damage. Exp Gerontol. 2001;36(9):1473–81.

    Article  CAS  PubMed  Google Scholar 

  59. Lindahl T, Wood RD. Quality control by DNA repair. Science. 1999;286(5446):1897–905.

    Article  CAS  PubMed  Google Scholar 

  60. Hegi ME, Liu L, Herman JG, et al. Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol. 2008;26(25):4189–99.

    Article  CAS  PubMed  Google Scholar 

  61. Brettel K, Byrdin M. Reaction mechanisms of DNA photolyase. Curr Opin Struct Biol. 2010;20(6):693–701.

    Article  CAS  PubMed  Google Scholar 

  62. Caldecott KW. Mammalian DNA single-strand break repair: an X-ra(y)ted affair. BioEssays. 2001;23(5):447–55.

    Article  CAS  PubMed  Google Scholar 

  63. Svilar D, Goellner EM, Almeida KH, Sobol RW. Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage. Antioxid Redox Signal. 2011;14(12):2491–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sung JS, Demple B. Roles of base excision repair subpathways in correcting oxidized abasic sites in DNA. FEBS J. 2006;273(8):1620–9.

    Article  CAS  PubMed  Google Scholar 

  65. Kastrinos F, Syngal S. Recently identified colon cancer predispositions: MYH and MSH6 mutations. Semin Oncol. 2007;34(5):418–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rouillon C, White MF. The evolution and mechanisms of nucleotide excision repair proteins. Res Microbiol. 2011;162(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  67. Rechkunova NI, Lavrik OI. Nucleotide excision repair in higher eukaryotes: mechanism of primary damage recognition in global genome repair. Subcell Biochem. 2010;50:251–77.

    Article  CAS  PubMed  Google Scholar 

  68. Kraemer KH, Patronas NJ, Schiffmann R, Brooks BP, Tamura D, DiGiovanna JJ. Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype-phenotype relationship. Neuroscience. 2007;145(4):1388–96.

    Article  CAS  PubMed  Google Scholar 

  69. Kunz C, Saito Y, Schar P. DNA repair in mammalian cells: mismatched repair: variations on a theme. Cell Mol Life Sci. 2009;66(6):1021–38.

    Article  CAS  PubMed  Google Scholar 

  70. Marti TM, Kunz C, Fleck O. DNA mismatch repair and mutation avoidance pathways. J Cell Physiol. 2002;191(1):28–41.

    Article  CAS  PubMed  Google Scholar 

  71. Power DG, Gloglowski E, Lipkin SM. Clinical genetics of hereditary colorectal cancer. Hematol Oncol Clin North Am. 2010;24(5):837–59.

    Article  PubMed  Google Scholar 

  72. Lynch HT, Lynch PM, Lanspa SJ, Snyder CL, Lynch JF, Boland CR. Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin Genet. 2009;76(1):1–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wood RD. Mammalian nucleotide excision repair proteins and interstrand crosslink repair. Environ Mol Mutagen. 2010;51(6):520–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kitao H, Takata M. Fanconi anemia: a disorder defective in the DNA damage response. Int J Hematol. 2011;93(4):417–24.

    Article  CAS  PubMed  Google Scholar 

  75. Mladenov E, Iliakis G. Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mutat Res. 2011;711(1–2):61–72.

    Article  CAS  PubMed  Google Scholar 

  76. Shuen AY, Foulkes WD. Inherited mutations in breast cancer genes--risk and response. J Mammary Gland Biol Neoplasia. Apr 2011;16(1):3–15.

    Article  PubMed  Google Scholar 

  77. Pruthi S, Gostout BS, Lindor NM. Identification and management of women with BRCA mutations or hereditary predisposition for breast and ovarian Cancer. Mayo Clin Proc. 2010;85(12):1111–20.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Frappart PO, McKinnon PJ. Ataxia-telangiectasia and related diseases. NeuroMolecular Med. 2006;8(4):495–511.

    Article  CAS  PubMed  Google Scholar 

  79. Lange SS, Takata K, Wood RD. DNA polymerases and cancer. Nat Rev Cancer. 2011;11(2):96–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Friedberg EC. Suffering in silence: the tolerance of DNA damage. Nat Rev Mol Cell Biol. 2005;6(12):943–53.

    Article  CAS  PubMed  Google Scholar 

  81. Wong RS. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30:87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Alexandrov LB, Stratton MR. Mutational signatures: the patterns of somatic mutations hidden in cancer genomes. Curr Opin Genet Dev. 2014;24:52–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Howard BD, Tessman I. Identification of the altered bases in mutated single-stranded DNA. Ii. In vivo mutagenesis by 5-bromodeoxyuridine and 2-aminopurine. J Mol Biol. 1964;9:364–71.

    Article  CAS  PubMed  Google Scholar 

  84. Setlow RB, Carrier WL. Pyrimidine dimers in ultraviolet-irradiated DNA’s. J Mol Biol. 1966;17(1):237–54.

    Article  CAS  PubMed  Google Scholar 

  85. Nik-Zainal S, Kucab JE, Morganella S, et al. The genome as a record of environmental exposure. Mutagenesis. 2015;30(6):763–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Brash DE. UV signature mutations. Photochem Photobiol. 2015;91(1):15–26.

    Article  CAS  PubMed  Google Scholar 

  87. Huang MN, Yu W, Teoh WW, et al. Genome-scale mutational signatures of aflatoxin in cells, mice, and human tumors. Genome Res. 2017;27(9):1475–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Alexandrov LB, Ju YS, Haase K, et al. Mutational signatures associated with tobacco smoking in human cancer. Science. 2016;354(6312):618–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Calvanese V, Lara E, Kahn A, Fraga MF. The role of epigenetics in aging and age-related diseases. Ageing Res Rev. 2009;8(4):268–76.

    Article  CAS  PubMed  Google Scholar 

  90. Fraga MF, Ballestar E, Paz MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A. 2005;102(30):10604–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Langevin SM, Houseman EA, Christensen BC, et al. The influence of aging, environmental exposures and local sequence features on the variation of DNA methylation in blood. Epigenetics. 2011;6(7):908–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Christensen BC, Houseman EA, Marsit CJ, et al. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet. 2009;5(8):e1000602.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358(11):1148–59.

    Article  CAS  PubMed  Google Scholar 

  94. Das PM, Singal R. DNA methylation and cancer. J Clin Oncol. 2004;22(22):4632–42.

    Article  CAS  PubMed  Google Scholar 

  95. Davis CD, Uthus EO. DNA methylation, cancer susceptibility, and nutrient interactions. Exp Biol Med (Maywood). 2004;229(10):988–95.

    Article  CAS  Google Scholar 

  96. Shi H, Wang MX, Caldwell CW. CpG islands: their potential as biomarkers for cancer. Expert Rev Mol Diagn. 2007;7(5):519–31.

    Article  CAS  PubMed  Google Scholar 

  97. Fraga MF, Herranz M, Espada J, et al. A mouse skin multistage carcinogenesis model reflects the aberrant DNA methylation patterns of human tumors. Cancer Res. 2004;64(16):5527–34.

    Article  CAS  PubMed  Google Scholar 

  98. Lujambio A, Esteller M. How epigenetics can explain human metastasis: a new role for microRNAs. Cell Cycle. 2009;8(3):377–82.

    Article  CAS  PubMed  Google Scholar 

  99. Gronbaek K, Hother C, Jones PA. Epigenetic changes in cancer. APMIS. 2007;115(10):1039–59.

    Article  PubMed  Google Scholar 

  100. Hoffmann MJ, Schulz WA. Causes and consequences of DNA hypomethylation in human cancer. Biochem Cell Biol. 2005;83(3):296–321.

    Article  CAS  PubMed  Google Scholar 

  101. International Agency for Research on Cancer. Chemical agents and related occupations. IARC Monogr Eval Carcinog Risks Hum. 2012;100F:249–94.

    Google Scholar 

  102. Fenga C, Gangemi S, Costa C. Benzene exposure is associated with epigenetic changes (Review). Mol Med Rep. 2016;13(4):3401–5.

    Article  CAS  PubMed  Google Scholar 

  103. Bollati V, Baccarelli A, Hou L, et al. Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res. 2007;67(3):876–80.

    Article  CAS  PubMed  Google Scholar 

  104. Hu J, Ma H, Zhang W, Yu Z, Sheng G, Fu J. Effects of benzene and its metabolites on global DNA methylation in human normal hepatic L02 cells. Environ Toxicol. 2014;29(1):108–16.

    Article  CAS  PubMed  Google Scholar 

  105. International Agency for Research on Cancer. Arsenic, metals, fibres and dusts. IARC Monogr Eval Carcinog Risks Hum. 2012;100C:41–93.

    Google Scholar 

  106. Chen H, Liu J, Zhao CQ, Diwan BA, Merrick BA, Waalkes MP. Association of c-myc overexpression and hyperproliferation with arsenite-induced malignant transformation. Toxicol Appl Pharmacol. 2001;175(3):260–8.

    Article  CAS  PubMed  Google Scholar 

  107. Zhao CQ, Young MR, Diwan BA, Coogan TP, Waalkes MP. Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc Natl Acad Sci U S A. 1997;94(20):10907–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pogribny IP, Rusyn I. Environmental toxicants, epigenetics, and cancer. Adv Exp Med Biol. 2013;754:215–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Reichard JF, Puga A. Effects of arsenic exposure on DNA methylation and epigenetic gene regulation. Epigenomics. 2010;2(1):87–104.

    Article  CAS  PubMed  Google Scholar 

  110. Davis CD, Uthus EO, Finley JW. Dietary selenium and arsenic affect DNA methylation in vitro in Caco-2 cells and in vivo in rat liver and colon. J Nutr. 2000;130(12):2903–9.

    Article  CAS  PubMed  Google Scholar 

  111. Cui X, Wakai T, Shirai Y, Hatakeyama K, Hirano S. Chronic oral exposure to inorganic arsenate interferes with methylation status of p16INK4a and RASSF1A and induces lung cancer in A/J mice. Toxicol Sci. 2006;91(2):372–81.

    Article  CAS  PubMed  Google Scholar 

  112. Huang YC, Hung WC, Chen WT, Yu HS, Chai CY. Sodium arsenite-induced DAPK promoter hypermethylation and autophagy via ERK1/2 phosphorylation in human uroepithelial cells. Chem Biol Interact. 2009;181(2):254–62.

    Article  CAS  PubMed  Google Scholar 

  113. Marsit CJ, Houseman EA, Schned AR, Karagas MR, Kelsey KT. Promoter hypermethylation is associated with current smoking, age, gender and survival in bladder cancer. Carcinogenesis. 2007;28(8):1745–51.

    Article  CAS  PubMed  Google Scholar 

  114. International Agency for Research on Cancer. Inorganic and organic lead compounds. IARC Monogr Eval Carcinog Risks Hum. 2006;87:39–468.

    Google Scholar 

  115. Hanna CW, Bloom MS, Robinson WP, et al. DNA methylation changes in whole blood is associated with exposure to the environmental contaminants, mercury, lead, cadmium and bisphenol A, in women undergoing ovarian stimulation for IVF. Hum Reprod. 2012;27(5):1401–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tajuddin SM, Amaral AF, Fernandez AF, et al. Genetic and non-genetic predictors of LINE-1 methylation in leukocyte DNA. Environ Health Perspect. 2013;121(6):650–6.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Wright RO, Schwartz J, Wright RJ, et al. Biomarkers of lead exposure and DNA methylation within retrotransposons. Environ Health Perspect. 2010;118(6):790–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Li C, Yang X, Xu M, Zhang J, Sun N. Epigenetic marker (LINE-1 promoter) methylation level was associated with occupational lead exposure. Clin Toxicol (Phila). 2013;51(4):225–9.

    Article  CAS  Google Scholar 

  119. Eid A, Bihaqi SW, Renehan WE, Zawia NH. Developmental lead exposure and lifespan alterations in epigenetic regulators and their correspondence to biomarkers of Alzheimer’s disease. Alzheimers Dement (Amst). 2016;2:123–31.

    Google Scholar 

  120. Bihaqi SW, Zawia NH. Alzheimer’s disease biomarkers and epigenetic intermediates following exposure to Pb in vitro. Curr Alzheimer Res. 2012;9(5):555–62.

    Article  CAS  PubMed  Google Scholar 

  121. Senut MC, Sen A, Cingolani P, Shaik A, Land SJ, Ruden DM. Lead exposure disrupts global DNA methylation in human embryonic stem cells and alters their neuronal differentiation. Toxicol Sci. 2014;139(1):142–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sanchez OF, Lee J, Yu King Hing N, Kim SE, Freeman JL, Yuan C. Lead (Pb) exposure reduces global DNA methylation level by non-competitive inhibition and alteration of dnmt expression. Metallomics. 2017;9(2):149–60.

    Article  CAS  PubMed  Google Scholar 

  123. International Agency for Research on Cancer. Arsenic, metals, fibres and dusts. IARC Monogr Eval Carcinog Risks Hum. 2012;100C:121–45.

    Google Scholar 

  124. Takiguchi M, Achanzar WE, Qu W, Li G, Waalkes MP. Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp Cell Res. 2003;286(2):355–65.

    Article  CAS  PubMed  Google Scholar 

  125. Benbrahim-Tallaa L, Waterland RA, Dill AL, Webber MM, Waalkes MP. Tumor suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de novo DNA methyltransferase. Environ Health Perspect. 2007;115(10):1454–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Castillo P, Ibanez F, Guajardo A, Llanos MN, Ronco AM. Impact of cadmium exposure during pregnancy on hepatic glucocorticoid receptor methylation and expression in rat fetus. PLoS One. 2012;7(9):e44139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Inglot P, Lewinska A, Potocki L, et al. Cadmium-induced changes in genomic DNA-methylation status increase aneuploidy events in a pig Robertsonian translocation model. Mutat Res. 2012;747(2):182–9.

    Article  CAS  PubMed  Google Scholar 

  128. Jiang G, Xu L, Song S, et al. Effects of long-term low-dose cadmium exposure on genomic DNA methylation in human embryo lung fibroblast cells. Toxicology. 2008;244(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  129. Poirier LA, Vlasova TI. The prospective role of abnormal methyl metabolism in cadmium toxicity. Environ Health Perspect. 2002;110(Suppl 5):793–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yuan D, Ye S, Pan Y, Bao Y, Chen H, Shao C. Long-term cadmium exposure leads to the enhancement of lymphocyte proliferation via down-regulating p16 by DNA hypermethylation. Mutat Res. 2013;757(2):125–31.

    Article  CAS  PubMed  Google Scholar 

  131. Wang B, Li Y, Tan Y, et al. Low-dose Cd induces hepatic gene hypermethylation, along with the persistent reduction of cell death and increase of cell proliferation in rats and mice. PLoS One. 2012;7(3):e33853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhou ZH, Lei YX, Wang CX. Analysis of aberrant methylation in DNA repair genes during malignant transformation of human bronchial epithelial cells induced by cadmium. Toxicol Sci. 2012;125(2):412–7.

    Article  CAS  PubMed  Google Scholar 

  133. Fujishiro H, Okugaki S, Yasumitsu S, Enomoto S, Himeno S. Involvement of DNA hypermethylation in down-regulation of the zinc transporter ZIP8 in cadmium-resistant metallothionein-null cells. Toxicol Appl Pharmacol. 2009;241(2):195–201.

    Article  CAS  PubMed  Google Scholar 

  134. Zhang C, Liang Y, Lei L, et al. Hypermethylations of RASAL1 and KLOTHO is associated with renal dysfunction in a Chinese population environmentally exposed to cadmium. Toxicol Appl Pharmacol. 2013;271(1):78–85.

    Article  CAS  PubMed  Google Scholar 

  135. Sanders AP, Smeester L, Rojas D, et al. Cadmium exposure and the epigenome: exposure-associated patterns of DNA methylation in leukocytes from mother-baby pairs. Epigenetics. 2014;9(2):212–21.

    Article  CAS  PubMed  Google Scholar 

  136. International Agency for Research on Cancer. Arsenic, metals, fibres and dusts. IARC Monogr Eval Carcinog Risks Hum. 2012;100C:169–218.

    Google Scholar 

  137. Broday L, Cai J, Costa M. Nickel enhances telomeric silencing in Saccharomyces cerevisiae. Mutat Res. 1999;440(2):121–30.

    Article  CAS  PubMed  Google Scholar 

  138. Chen H, Ke Q, Kluz T, Yan Y, Costa M. Nickel ions increase histone H3 lysine 9 dimethylation and induce transgene silencing. Mol Cell Biol. 2006;26(10):3728–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ke Q, Davidson T, Chen H, Kluz T, Costa M. Alterations of histone modifications and transgene silencing by nickel chloride. Carcinogenesis. 2006;27(7):1481–8.

    Article  CAS  PubMed  Google Scholar 

  140. Chen H, Giri NC, Zhang R, et al. Nickel ions inhibit histone demethylase JMJD1A and DNA repair enzyme ABH2 by replacing the ferrous iron in the catalytic centers. J Biol Chem. 2010;285(10):7374–83.

    Article  CAS  PubMed  Google Scholar 

  141. Ke Q, Li Q, Ellen TP, Sun H, Costa M. Nickel compounds induce phosphorylation of histone H3 at serine 10 by activating JNK-MAPK pathway. Carcinogenesis. 2008;29(6):1276–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. International Agency for Research on Cancer. Arsenic, metals, fibres and dusts. IARC Monogr Eval Carcinog Risks Hum. 2012;100C:147–67.

    Google Scholar 

  143. Weidman JR, Dolinoy DC, Murphy SK, Jirtle RL. Cancer susceptibility: epigenetic manifestation of environmental exposures. Cancer J. 2007;13(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  144. Zhou X, Sun H, Ellen TP, Chen H, Costa M. Arsenite alters global histone H3 methylation. Carcinogenesis. 2008;29(9):1831–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. International Agency for Research on Cancer. Chemical agents and related occupations. IARC Monogr Eval Carcinog Risks Hum. 2012;100F:309–38.

    Google Scholar 

  146. Sved J, Bird A. The expected equilibrium of the CpG dinucleotide in vertebrate genomes under a mutation model. Proc Natl Acad Sci U S A. 1990;87(12):4692–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Rideout WM 3rd, Coetzee GA, Olumi AF, Jones PA. 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science. 1990;249(4974):1288–90.

    Article  CAS  PubMed  Google Scholar 

  148. Chen JX, Zheng Y, West M, Tang MS. Carcinogens preferentially bind at methylated CpG in the p53 mutational hot spots. Cancer Res. 1998;58(10):2070–5.

    CAS  PubMed  Google Scholar 

  149. Denissenko MF, Pao A, Tang M, Pfeifer GP. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science. 1996;274(5286):430–2.

    Article  CAS  PubMed  Google Scholar 

  150. Yoon JH, Smith LE, Feng Z, Tang M, Lee CS, Pfeifer GP. Methylated CpG dinucleotides are the preferential targets for G-to-T transversion mutations induced by benzo[a]pyrene diol epoxide in mammalian cells: similarities with the p53 mutation spectrum in smoking-associated lung cancers. Cancer Res. 2001;61(19):7110–7.

    CAS  PubMed  Google Scholar 

  151. Feng Z, Hu W, Hu Y, Tang MS. Acrolein is a major cigarette-related lung cancer agent: Preferential binding at p53 mutational hotspots and inhibition of DNA repair. Proc Natl Acad Sci U S A. 2006;103(42):15404–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.

    Article  CAS  Google Scholar 

  153. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.

    Article  CAS  Google Scholar 

  154. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517(7536):576–82.

    Article  CAS  Google Scholar 

  155. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.

    Article  CAS  Google Scholar 

  156. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15.

    Article  CAS  Google Scholar 

  157. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499(7456):43–9.

    Article  CAS  Google Scholar 

  158. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507(7492):315–22.

    Article  CAS  Google Scholar 

  159. Cancer Genome Atlas Research Network, Kandoth C, Schultz N, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73.

    Article  CAS  Google Scholar 

  160. Cancer Genome Atlas Research Network, Ley TJ, Miller C, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059–74.

    Article  CAS  Google Scholar 

  161. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511(7511):543–50.

    Article  CAS  Google Scholar 

  162. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489(7417):519–25.

    Article  CAS  Google Scholar 

  163. Kandoth C, McLellan MD, Vandin F, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502(7471):333–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Langevin SM, Kelsey KT. Clinical epigenetics of lung cancer. In: Laurence J, Van Beusekom M, editors. Translating epigenetics to the clinic. Oxford: Academic Press; 2017. p. 97–133.

    Chapter  Google Scholar 

  165. Li X. Emerging role of mutations in epigenetic regulators including MLL2 derived from The Cancer Genome Atlas for cervical cancer. BMC Cancer. 2017;17(1):252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49(11):1603–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Schraufstatter I, Hyslop PA, Jackson JH, Cochrane CG. Oxidant-induced DNA damage of target cells. J Clin Invest. 1988;82(3):1040–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ovrevik J, Refsnes M, Lag M, Brinchmann BC, Schwarze PE, Holme JA. Triggering mechanisms and inflammatory effects of combustion exhaust particles with implication for carcinogenesis. Basic Clin Pharmacol Toxicol. 2017;121(Suppl 3):55–62.

    Article  CAS  PubMed  Google Scholar 

  170. International Agency for Research on Cancer. Diesel and gasoline engine exhaust and some nitroarenes. IARC Monogr Eval Carcinog Risks Hum. 2014;105:33–467.

    Google Scholar 

  171. International Agency for Research on Cancer. Outdoor air pollution. IARC Monogr Eval Carcinog Risks Hum. 2016;109:33–444.

    Google Scholar 

  172. Falcon-Rodriguez CI, Osornio-Vargas AR, Sada-Ovalle I, Segura-Medina P. Aeroparticles, composition, and lung diseases. Front Immunol. 2016;7:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Benedetti S, Nuvoli B, Catalani S, Galati R. Reactive oxygen species a double-edged sword for mesothelioma. Oncotarget. 2015;6(19):16848–65.

    Article  PubMed  PubMed Central  Google Scholar 

  174. International Agency for Research on Cancer. Some chemicals present in industrial and consumer products, food and drinking-water. IARC Monogr Eval Carcinog Risks Hum. 2013;101:149–284.

    Google Scholar 

  175. Eveillard A, Mselli-Lakhal L, Mogha A, et al. Di-(2-ethylhexyl)-phthalate (DEHP) activates the constitutive androstane receptor (CAR): a novel signalling pathway sensitive to phthalates. Biochem Pharmacol. 2009;77(11):1735–46.

    Article  CAS  PubMed  Google Scholar 

  176. Kambia N, Farce A, Belarbi K, et al. Docking study: PPARs interaction with the selected alternative plasticizers to di(2-ethylhexyl) phthalate. J Enzyme Inhib Med Chem. 2016;31(3):448–55.

    CAS  PubMed  Google Scholar 

  177. International Agency for Research on Cancer. Polychlorinated biphenyls and polybrominated biphenyls. IARC Monogr Eval Carcinog Risks Hum. 2016;107:39–440.

    Google Scholar 

  178. Boas M, Feldt-Rasmussen U, Skakkebaek NE, Main KM. Environmental chemicals and thyroid function. Eur J Endocrinol. 2006;154(5):599–611.

    Article  CAS  PubMed  Google Scholar 

  179. International Agency for Research on Cancer. Chemical agents and related occupations. IARC Monogr Eval Carcinog Risks Hum. 2012;100F:339–78.

    Google Scholar 

  180. Kietz S, Thomsen JS, Matthews J, Pettersson K, Strom A, Gustafsson JA. The Ah receptor inhibits estrogen-induced estrogen receptor beta in breast cancer cells. Biochem Biophys Res Commun. 2004;320(1):76–82.

    Article  CAS  PubMed  Google Scholar 

  181. Matthews J, Wihlen B, Thomsen J, Gustafsson JA. Aryl hydrocarbon receptor-mediated transcription: ligand-dependent recruitment of estrogen receptor alpha to 2,3,7,8-tetrachlorodibenzo-p-dioxin-responsive promoters. Mol Cell Biol. 2005;25(13):5317–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Dvorak Z, Vrzal R, Pavek P, Ulrichova J. An evidence for regulatory cross-talk between aryl hydrocarbon receptor and glucocorticoid receptor in HepG2 cells. Physiol Res. 2008;57(3):427–35.

    CAS  PubMed  Google Scholar 

  183. International Agency for Research on Cancer. DDT, lindane and 2,4-D. IARC Monogr Eval Carcinog Risks Hum. 2015;113

    Google Scholar 

  184. Lemaire G, Mnif W, Mauvais P, Balaguer P, Rahmani R. Activation of alpha- and beta-estrogen receptors by persistent pesticides in reporter cell lines. Life Sci. 2006;79(12):1160–9.

    Article  CAS  PubMed  Google Scholar 

  185. International Agency for Research on Cancer. Pharmaceuticals. IARC Monogr. 2012;100A:175–218.

    Google Scholar 

  186. Couse JF, Korach KS. Estrogen receptor-alpha mediates the detrimental effects of neonatal diethylstilbestrol (DES) exposure in the murine reproductive tract. Toxicology. 2004;205(1–2):55–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Summary

Carcinogenesis is a complex multistep process involving an accumulation of genetic and epigenetic changes that alter the phenotype of the cell and imbue a growth or survival advantage that can eventually allow affected cells to develop malignant properties and invade into other tissues. Exogenous physical, chemical, and biological exposures stemming from the environment or occupational setting can induce such somatic genetic and epigenetic changes through a variety of mechanisms. Fortunately, eukaryotic cells have evolved a highly efficient mechanism for repairing such damage, although unfortunately, despite the high-fidelity of the process, mutations still may go unrepaired and become incorporated into the genome. Understanding how physical, chemical, and biological exposures can lead to genetic and epigenetic aberrations is paramount for discerning how occupational exposures can modulate risk for cancer development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl T. Kelsey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Langevin, S.M., Kelsey, K.T. (2020). Mechanisms of Environmental and Occupational Carcinogenesis. In: Anttila, S., Boffetta, P. (eds) Occupational Cancers. Springer, Cham. https://doi.org/10.1007/978-3-030-30766-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30766-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30765-3

  • Online ISBN: 978-3-030-30766-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics