Skip to main content

Towards Automated Identification of Technological Trajectories

Part of the Communications in Computer and Information Science book series (CCIS,volume 1093)

Abstract

The paper presents a text mining approach to identifying technological trajectories. The main problem addressed is the selection of documents related to a particular technology. These documents are needed to identify a trajectory of the technology. Two different methods were compared (based on word2vec and lexical-morphological and syntactic search). The aim of developed approach is to retrieve more information about a given technology and about technologies that could affect its development. We present the results of experiments on a dataset containing over 4.4 million of documents as a part of USPTO patent database. Self-driving car technology was chosen as an example. The result of the research shows that the developed methods are useful for automated information retrieval as the first stage of the analysis and identification of technological trajectories.

Keywords

  • Text mining
  • Technological trajectories
  • Similar document retrieval

This work was supported by the RFBR grant № 17-29-07016 ofi_m.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-30763-9_12
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-30763-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Dosi, G.: Technological paradigms and technological trajectories: a suggested interpretation of the determinants and directions of technical change. Res. Policy 11(3), 147–162 (1982)

    CrossRef  Google Scholar 

  2. Liu, X., et al.: Weighted hybrid clustering by combining text mining and bibliometrics on a large-scale journal database. J. Am. Soc. Inf. Sci. Technol. 61(6), 1105–1119 (2010)

    Google Scholar 

  3. Niemann, H., Moehrle, M.G., Frischkorn, J.: The use of a new patent text-mining and visualization method for identifying patenting patterns over time: concept, method and test application. Technol. Forecast. Soc. Change 115, 210–220 (2017)

    CrossRef  Google Scholar 

  4. Ozcan, S., Islam, N.: Patent information retrieval: approaching a method and analysing nanotechnology patent collaborations. Scientometrics 111(2), 941–970 (2017)

    CrossRef  Google Scholar 

  5. Sochenkov, I.V.: Metod sravneniya textov dlya resheniya poiskovo-analiticheskikh zadatch (Text comparison method for solving search and analytical tasks). Intellectualniy poisk informacii (Intelligent information retrieval), vol. 2, pp. 32–43 (2013)

    Google Scholar 

  6. Möller, A., Moehrle, M.G.: Complementing keyword search with semantic search—introducing an iterative semiautomatic method for near patent search based on semantic similarities. Scientometrics 102(1), 77–96 (2015)

    CrossRef  Google Scholar 

  7. Korobkin, D.M., et al.: Prior art candidate search on base of statistical and semantic patent analysis. In: Multi Conference on Computer Science and Information Systems 2017, pp. 231–238 (2017)

    Google Scholar 

  8. Alves, T., Rodrigues, R., Costa, H., Rocha, M.: Development of text mining tools for information retrieval from patents. In: Fdez-Riverola, F., Mohamad, M., Rocha, M., De Paz, J., Pinto, T. (eds.) PACBB 2017. AISC, vol. 616, pp. 66–73. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60816-7_9

    Google Scholar 

  9. Osipov, G., Smirnov, I., Tikhomirov, I., Sochenkov, I., Shelmanov, A.: Exactus expert—search and analytical engine for research and development support. In: Hadjiski, M., Kasabov, N., Filev, D., Jotsov, V. (eds.) Novel Applications of Intelligent Systems. SCI, vol. 586, pp. 269–285. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-14194-7_14

    CrossRef  Google Scholar 

  10. Osipov, G.S., et al.: Exactus patent–sistema patentnogo poiska i analiza (Exactus Patent–patent search and analysis system)

    Google Scholar 

  11. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  12. Okamoto, M., Shan, Z., Orihara, R.: Applying information extraction for patent structure analysis. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 989–992. ACM (2017)

    Google Scholar 

  13. Mikolov, T., et al.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  14. Smirnov, I.V., et al.: Semantic-syntactic analysis of natural languages. Part II. Method for semantic-syntactic analysis of texts. In: Iskusstvenny intellekt i prinyatie resheniy–Artificial Intelligence and Decision Making, vol. 1, pp. 11–24 (2014)

    Google Scholar 

  15. Search for patents–USPTO. https://www.uspto.gov/patents-application-process/search-patents

  16. Suvorov, R.E., Sochenkov, I.V.: Opredelenie svyazannosti nauchno-technicheskikh dokumentov na osnove kharakteristiki tematicheskoy znachimosti (Determination of the connectedness of scientific and technical documents based on the characteristics of thematic significance). Iskusstvenniy intellect I prinyatie resheniy (Artificial intelligence and making decisions)

    Google Scholar 

  17. Dataset trajectories-uspto. http://nlp.isa.ru/trajectories-uspto. Accessed 04 July 2019

  18. Sochenkov, I.V., Suvorov, R.E.: Servisy polnotekstovogo poiska v informacionno-analiticheskoy sisteme (chast 1) (Full-text search services in the information and analytical system). In: Informatsionnie tekhnologii i vichislitelnie sistemy (information technologies and computing systems), no. 2, p. 69 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sergey S. Volkov or Dmitry A. Devyatkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Volkov, S.S., Devyatkin, D.A., Sochenkov, I.V., Tikhomirov, I.A., Toganova, N.V. (2019). Towards Automated Identification of Technological Trajectories. In: Kuznetsov, S., Panov, A. (eds) Artificial Intelligence. RCAI 2019. Communications in Computer and Information Science, vol 1093. Springer, Cham. https://doi.org/10.1007/978-3-030-30763-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30763-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30762-2

  • Online ISBN: 978-3-030-30763-9

  • eBook Packages: Computer ScienceComputer Science (R0)