Abstract
The websites of Cultural Heritage institutions attract the full range of users, from professionals to novices, for a variety of tasks. However, many institutions are reporting high bounce rates and therefore seeking ways to better engage users. The analysis of transaction logs can provide insights into users’ searching and navigational behaviours and support engagement strategies. In this paper we present the results from a transaction log analysis of web server logs representing user-system interactions from the seven websites of National Museums Liverpool (NML). In addition, we undertake an exploratory cluster analysis of users to identify potential user groups that emerge from the data. We compare this with previous studies of NML website users.
Keywords
- Digital cultural heritage
- Museum website
- Users
- Survey
- Transaction log analysis
- Cluster analysis
This is a preview of subscription content, access via your institution.
Buying options


Notes
- 1.
- 2.
- 3.
- 4.
Alternative algorithms such as k-modes (k-prototypes) and DBScan were also tested, but no stable clusters emerged.
- 5.
Based on the IP2Location IP4 allocated IP address ranges; however, it is noted that the United Nations only identifies 195.
References
Jones, S., Cunningham, S.J., McNab, R., Boddie, S.: A transaction log analysis of a digital library. Int. J. Digit. Libr. 3(2), 152–169 (2000)
McKay, D., Buchanan, G., Chang, S.: It ain’t what you do, it’s the way that you do it: design guidelines to better support online browsing. Proc. Assoc. Inf. Sci. Technol. 55(1), 347–356 (2018)
Peters, T.A.: The history and development of transaction log analysis. Library Hi Tech 11(2), 41–66 (1993)
Jansen, B.J., Spink, A., Saracevic, T.: Real life, real users, and real needs: a study and analysis of user queries on the web. Inf. Process. Manag. 36(2), 207–227 (2000)
Ciber: Europeana 2012–2013: usage and performance update. Technical report, CIBER Research, July 2013
Walsh, D., Hall, M.M., Clough, P., Foster, J.: Characterising online museum users: a study of the National Museums Liverpool museum website. Int. J. Digit. Libr. (2018). https://doi.org/10.1007/s00799-018-0248-8
Walsh, D., Hall, M., Clough, P., Foster, J.: The ghost in the museum website: investigating the general public’s interactions with museum websites. In: Kamps, J., Tsakonas, G., Manolopoulos, Y., Iliadis, L., Karydis, I. (eds.) TPDL 2017. LNCS, vol. 10450, pp. 434–445. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67008-9_34
Farrell, S.: Search-log analysis: the most overlooked opportunity in web UX research, July 2017. https://www.nngroup.com/articles/search-log-analysis/. Accessed 14 Mar 2019
Eirinaki, M., Vazirgiannis, M.: Web mining for web personalization. ACM Trans. Internet Technol. (TOIT) 3(1), 1–27 (2003)
Falk, J.H.: Identity and the Museum Visitor Experience. Left Coast Press, Walnut Creek (2009)
Templeton, C.A.: Museum visitor engagement through resonant, rich and interactive experiences (2011)
Spellerberg, M., Granata, E., Wambold, S.: Visitor-first, mobile-first: designing a visitor-centric mobile experience. In: Museums and the Web (2016)
Vilar, P., Šauperl, A.: Archival literacy: different users, different information needs, behaviour and skills. In: Kurbanoğlu, S., Špiranec, S., Grassian, E., Mizrachi, D., Catts, R. (eds.) ECIL 2014. CCIS, vol. 492, pp. 149–159. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14136-7_16
Pantano, E.: Virtual cultural heritage consumption: a 3D learning experience. Int. J. Technol. Enhanc. Learn. 3(5), 482–495 (2011)
Booth, B.: Understanding the information needs of visitors to museums. Mus. Manag. Curatorship 17(2), 139–157 (1998)
Marchionini, G., Plaisant, C., Komlodi, A.: The people in digital libraries: multifaceted approaches to assessing needs and impact. In: Social Practice in Design and Evaluation, Digital Library Use, pp. 119–160 (2003)
Clough, P., Hill, T., Paramita, M.L., Goodale, P.: Europeana: what users search for and why. In: Kamps, J., Tsakonas, G., Manolopoulos, Y., Iliadis, L., Karydis, I. (eds.) TPDL 2017. LNCS, vol. 10450, pp. 207–219. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67008-9_17
Russell-Rose, T., Clough, P.: Mining search logs for usage patterns. In: Text Mining and Visualization: Case Studies using Open-Source Tools, vol. 40 (2016)
Kachhadiya, B.C., Patel, B.: A survey on sequential pattern mining algorithm for web log pattern data. In: 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), pp. 1269–1273. IEEE (2018)
Lau, T., Horvitz, E.: Patterns of search: analyzing and modeling web query refinement. In: Kay, J. (ed.) UM99 User Modeling. CICMS, vol. 407, pp. 119–128. Springer, Vienna (1999). https://doi.org/10.1007/978-3-7091-2490-1_12
Chen, H.M., Cooper, M.D.: Using clustering techniques to detect usage patterns in a web-based information system. J. Am. Soc. Inf. Sci. Technol. 52(11), 888–904 (2001)
Wang, G., Zhang, X., Tang, S., Zheng, H., Zhao, B.Y.: Unsupervised clickstream clustering for user behavior analysis. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 225–236. ACM (2016)
Zhang, J., Kamps, J.: Search log analysis of user stereotypes, information seeking behavior, and contextual evaluation. In: Proceedings of the Third Symposium on Information Interaction in Context, pp. 245–254. ACM (2010)
Stenmark, D.: Identifying clusters of user behavior in intranet search engine log files. J. Am. Soc. Inf. Sci. Technol. 59(14), 2232–2243 (2008)
He, D., Göker, A.: Detecting session boundaries from web user logs. In: Proceedings of the BCS-IRSG 22nd Annual Colloquium on Information Retrieval Research, pp. 57–66 (2000)
Bogaard, T., Hollink, L., Wielemaker, J., Hardman, L., van Ossenbruggen, J.: Searching for old news: user interests and behavior within a national collection. In: Proceedings of the 2019 Conference on Human Information Interaction and Retrieval, pp. 113–121. ACM (2019)
Bholowalia, P., Kumar, A.: EBK-means: a clustering technique based on elbow method and k-means in wsn. Int. J. Comput. Appl. 105(9), 17–24 (2014)
Skov, M., Ingwersen, P.: Exploring information seeking behaviour in a digital museum context. In: Proceedings of the Second International Symposium on Information Interaction in Context, IIiX 2008, pp. 110–115. ACM, New York (2008)
Skov, M.: The reinvented museum: exploring information seeking behaviour in a digital museum context. Ph.D. thesis, Københavns Universitet’Københavns Universitet’, Faculty of Humanities, School of Library and Information Science, Royal School of Library and Information Science (2009, unpublished thesis)
Elsweiler, D., Wilson, M.L., Lunn, B.K.: Chapter 9 understanding casual-leisure information behaviour. In: New Directions in Information Behaviour. Library and Information Science, vol. 1, pp. 211–241. Emerald Group Publishing Limited (2011)
Acknowledgements
We would like to thank National Museums Liverpool for providing access to the web server transaction logs.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Walsh, D., Clough, P., Hall, M.M., Hopfgartner, F., Foster, J., Kontonatsios, G. (2019). Analysis of Transaction Logs from National Museums Liverpool. In: Doucet, A., Isaac, A., Golub, K., Aalberg, T., Jatowt, A. (eds) Digital Libraries for Open Knowledge. TPDL 2019. Lecture Notes in Computer Science(), vol 11799. Springer, Cham. https://doi.org/10.1007/978-3-030-30760-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-30760-8_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30759-2
Online ISBN: 978-3-030-30760-8
eBook Packages: Computer ScienceComputer Science (R0)