Skip to main content

SciTo Trends: Visualising Scientific Topic Trends

Part of the Lecture Notes in Computer Science book series (LNISA,volume 11799)


Monitoring trends in scientific disciplines is a common task for researchers and other professionals in the broad research and academic community, like research and innovation policy makers and research fund managers. We demonstrate SciTo, a powerful tool that assists in the monitoring of trends in scientific disciplines. SciTo supports keyword-based search for the identification of scientific topics of interest and comparison of interesting topics to each other in terms of their popularity inside the academic community.


  • Information retrieval
  • Scientific impact
  • Topic modeling

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-30760-8_41
  • Chapter length: 4 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-30760-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)
Fig. 1.


  1. 1.

  2. 2.

  3. 3.

  4. 4.

  5. 5.

  6. 6.

  7. 7.

  8. 8.

  9. 9.

  10. 10.

  11. 11.

  12. 12.

  13. 13.


  1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. JMLR 3, 993–1022 (2003)

    MATH  Google Scholar 

  2. Ghosh, R., Kuo, T.T., Hsu, C.N., Lin, S.D., Lerman, K.: Time-aware ranking in dynamic citation networks. In: IEEE ICDMW, pp. 373–380. IEEE (2011)

    Google Scholar 

  3. Sinha, A., et al.: An overview of Microsoft Academic Service (MAS) and applications. In: WWW, pp. 243–246 (2015)

    Google Scholar 

  4. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: ArnetMiner: extraction and mining of academic social networks. In: ACM SIGKDD, pp. 990–998 (2008)

    Google Scholar 

  5. Wu, J., et al.: CiteSeerX: AI in a digital library search engine. AI Mag. 36(3), 35–48 (2015)

    CrossRef  Google Scholar 

Download references


We acknowledge support of this work by the project “Moving from Big Data Management to Data Science” (MIS 5002437/3) which is implemented under the Action “Re-inforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and co-financed by Greece and the European Union (European Regional Development Fund).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Thanasis Vergoulis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Chatzopoulos, S., Deligiannis, P., Vergoulis, T., Kanellos, I., Tryfonopoulos, C., Dalamagas, T. (2019). SciTo Trends: Visualising Scientific Topic Trends. In: Doucet, A., Isaac, A., Golub, K., Aalberg, T., Jatowt, A. (eds) Digital Libraries for Open Knowledge. TPDL 2019. Lecture Notes in Computer Science(), vol 11799. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30759-2

  • Online ISBN: 978-3-030-30760-8

  • eBook Packages: Computer ScienceComputer Science (R0)