A Study on the Readability of Scientific Publications

  • Thanasis VergoulisEmail author
  • Ilias Kanellos
  • Anargiros Tzerefos
  • Serafeim Chatzopoulos
  • Theodore Dalamagas
  • Spiros Skiadopoulos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11799)


Several works have used traditional readability measures to investigate the readability of scientific texts and its association with scientific impact . However, these works are limited in terms of dataset size, range of domains, and examined readability and impact measures. Our study addresses these limitations, investigating the readability of paper abstracts on a very large multidisciplinary corpus, the association of expert judgments on abstract readability with traditional readability measures, and the association of abstract readability with the scientific impact of the corresponding publication.


Readability Scientific impact Text analysis 



We acknowledge support of this work by the project “Moving from Big Data Management to Data Science” (MIS 5002437/3) which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).


  1. 1.
    Bauerly, R.J., Johnson, D.T., Singh, M.: Readability and writing well. Mark. Manag. J. 16(1), 216–227 (2006)Google Scholar
  2. 2.
    Bonett, D.G., Wright, T.A.: Sample size requirements for estimating pearson, kendall and spearman correlations. Psychometrika 65(1), 23–28 (2000)CrossRefGoogle Scholar
  3. 3.
    Bottle, R.T., Rennie, J.S., Russ, S., Sardar, Z.: Changes in the communication of chemical information I: some effects of growth. J. Inf. Sci. 6(4), 103–108 (1983)CrossRefGoogle Scholar
  4. 4.
    Crosier, K.: How effectively do marketing journals transfer useful learning from scholars to practitioners? Mark. Intell. Plan. 22(5), 540–556 (2004)CrossRefGoogle Scholar
  5. 5.
    Flesch, R.: A new readability yardstick. J. Appl. Psychol. 32(3), 221 (1948)CrossRefGoogle Scholar
  6. 6.
    Gazni, A.: Are the abstracts of high impact articles more readable? Investigating the evidence from top research institutions in the world. J. Inf. Sci. 37(3), 273–281 (2011)CrossRefGoogle Scholar
  7. 7.
    Ghosh, R., Kuo, T.T., Hsu, C.N., Lin, S.D., Lerman, K.: Time-aware ranking in dynamic citation networks. In: 2011 IEEE 11th International Conference on Data Mining Workshops, pp. 373–380. IEEE (2011)Google Scholar
  8. 8.
    Gunning, R.: The Technique of Clear Writing. McGraw-Hill, New York (1952)Google Scholar
  9. 9.
    Hartley, J., Pennebaker, J.W., Fox, C.: Abstracts, introductions and discussions: how far do they differ in style? Scientometrics 57(3), 389–398 (2003)CrossRefGoogle Scholar
  10. 10.
    Hartley, J., Sotto, E., Pennebaker, J.: Style and substance in psychology: are influential articles more readable than less influential ones? Soc. Stud. Sci. 32(2), 321–334 (2002)CrossRefGoogle Scholar
  11. 11.
    Lei, L., Yan, S.: Readability and citations in information science: evidence from abstracts and articles of four journals (2003–2012). Scientometrics 108(3), 1155–1169 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Letchford, A., Preis, T., Moat, H.S.: The advantage of simple paper abstracts. J. Informetr. 10(1), 1–8 (2016)CrossRefGoogle Scholar
  13. 13.
    Mc Laughlin, G.H.: Smog grading-a new readability formula. J. Read. 12(8), 639–646 (1969)Google Scholar
  14. 14.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. Technical report, Stanford InfoLab (1999)Google Scholar
  15. 15.
    Plavén-Sigray, P., Matheson, G.J., Schiffler, B.C., Thompson, W.H.: The readability of scientific texts is decreasing over time. Elife 6, e27725 (2017)CrossRefGoogle Scholar
  16. 16.
    Sawyer, A.G., Laran, J., Xu, J.: The readability of marketing journals: are award-winning articles better written? J. Mark. 72(1), 108–117 (2008)CrossRefGoogle Scholar
  17. 17.
    Sinha, A., et al.: An overview of Microsoft academic service (MAS) and applications. In: Proceedings of the 24th International Conference on World Wide Web, pp. 243–246. ACM (2015)Google Scholar
  18. 18.
    Stremersch, S., Verniers, I., Verhoef, P.C.: The quest for citations: drivers of article impact. J. Mark. 71(3), 171–193 (2007)CrossRefGoogle Scholar
  19. 19.
    Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: ArnetMiner: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD, pp. 990–998. ACM (2008)Google Scholar
  20. 20.
    Yeung, A.W.K., Goto, T.K., Leung, W.K.: Readability of the 100 most-cited neuroimaging papers assessed by common readability formulae. Front. Hum. Neurosci. 12, 308 (2018)CrossRefGoogle Scholar
  21. 21.
    Zamanian, M., Heydari, P.: Readability of texts: state of the art. Theory Pract. Lang. Stud. 2(1), 43–53 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Thanasis Vergoulis
    • 1
    Email author
  • Ilias Kanellos
    • 1
    • 2
  • Anargiros Tzerefos
    • 3
  • Serafeim Chatzopoulos
    • 1
    • 3
  • Theodore Dalamagas
    • 1
  • Spiros Skiadopoulos
    • 3
  1. 1.IMSIAthena Research and Innovation CenterAthensGreece
  2. 2.School of Electrical and Computer EngineeringNTUAAthensGreece
  3. 3.Department of Informatics and TelecommunicationsUniversity of the PeloponneseTripoliGreece

Personalised recommendations