Skip to main content

Modern Methods in Microscopy for the Assessment of Biofilms

  • Chapter
  • First Online:
Biofilms in Human Diseases: Treatment and Control

Abstract

Scientific imaging technique is important for the analysis and understanding of complex natural systems. A biofilm comprises any group of microorganisms which cells stick to each other and often also to a surface. It is pandemic integrated important scenario executed by microorganisms to sustain in occasionally coarse environmental conditions. It is bacterial colonies adhered to a surface and fixed in an outer polymeric substance which provides for the protection, strength, and nutrients of the various bacterial species inherited. A few techniques have been currently used for biofilm studies that have committed to broad knowledge on biofilm structure and composition. Another microscopic technique such as light and electron microscopy and new latest techniques have been enclosed using confocal laser scanning microscopy (CLSM), focused ion beam SEM, Fluorescent microscopy, high-frequency acoustic microscopy, and atomic force microscopy. In this chapter, immersed by discriminating aspects emphasizes the advantages and obstructions of several methods. Other imaging methods have been used to identify biofilm biomass and cell viability. That is why we explain different microscopy methods, including their advantages and disadvantages. This chapter summarized the more novel applications with the purpose to encourage research and new microscopic techniques in microbiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahimou F, Semmens MJ, Novak PJ, Haugstad G (2007) Biofilm cohesiveness measurement using a novel atomic force microscopy methodology. Appl Environ Microbiol 73:2897–2904

    Article  CAS  Google Scholar 

  • Alhede M, Qvortrup K, Liebrechts R et al (2012) Combination of microscopic techniques reveals a comprehensive visual impression of biofilm structure and composition. FEMS Immunol Med Microbiol 65:335–342

    Article  CAS  Google Scholar 

  • Allison DG, Ruiz B, SanJose C, Jaspe A, Gilbert P (1998) Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. Fems Microbiol Lett 167(2):179–184

    Article  CAS  Google Scholar 

  • Anastasiadis P, Mojica K, Allen JS, Matter M (2014) Datection and quantification of bacterial biofilms combining high-frequency acoustic microscopy and targated lipid microparticles. J Nanobiotechnol. https://doi.org/10.1186/1477-3155-12-24

  • Atale N, Gupta S, Yadav UCS, Rani V (2014) Cell-death assessment by fluorescent and nonfluorescent cytosolic and nuclear staining techniques. J Microsc 255(1):7–19. WOS: 000339710500002. PMID: 24831993. http://doi.org/10.1111/jmi.12133

  • Azeredo J, Azevedo NF, Briandet R, Cerca N, Coenye T, Costa AR, Desvaux M, Di Bonaventura G, Hébraud M, Jaglic Z, Kačániová M, Knøchel S, Lourenço A, Mergulhão F, Meyer RL, Nychas G, Simões M, Tresse O, Sternberg C (2017) Critical review on biofilm methods. Crit Rev Microbiol 43(3):313–351. https://doi.org/10.1080/1040841X.2016.1208146

    Article  CAS  Google Scholar 

  • Bogachev MI, Volkov VY, Markelov OA, Trizna EY, Baydamshina DR, Melnikov V, Murtazina RR, Zelenikhin PV, Sharafutdinov IS, Kayumov AR (2018) Fast and simple tool for the quantification of biofilm-embedded cells sub-populations from fluorescent microscopic images. PLoS ONE 13(5):e0193267. https://doi.org/10.1371/journal

    Article  PubMed  PubMed Central  Google Scholar 

  • Cerca N, Gomes F, Pereira S, Teixeira P, Oliveira R (2012) Confocal laser scanning microscopy analysis of S. epidermidis biofilms exposed to farnesol, vancomycin and rifampicin. BMC Res Notes 5:244

    Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322

    Article  CAS  Google Scholar 

  • Cuéllar-Cruz M, Vega-González A, Mendoza-Novelo B, López-Romero E, Ruiz-Baca E, Quintanar-Escorza MA et al (2012) The effect of biomaterials and antifungals on biofilm formation by Candida species: a review. Eur J Clin Microbiol Infect Dis 31:2513–2527. PMID: 22581304. https://doi.org/10.1007/s10096-012-1634-6

  • Davey ME, O’toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64(4):847–867

    Article  CAS  Google Scholar 

  • Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890

    Google Scholar 

  • deFuente-Núñez C, Reffuveille F, Fernandez L et al (2013) Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol 16(5):580–589

    Article  Google Scholar 

  • Finkel JS, Mitchell AP (2011) Genetic control of Candida albicans biofilm development. Nat Rev Microbiol 9:109–118. PMID: 21189476 PMCID: PMC3891587. https://doi.org/10.1038/nrmicro2475

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633

    Article  CAS  Google Scholar 

  • Guennoc CM, Rose C, Guinnet F, Miquel I, Labbé J, Deveau A (2017) A new method for qualitative multi-scale analysis of bacterial biofilms on filamentous fungal colonies using confocal and electron microscopy. J Vis Exp 119:e54771. https://doi.org/10.3791/54771

    Article  CAS  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108

    Article  CAS  Google Scholar 

  • Hengzhuang W, Wu W, Ciofu O (2011) Pharmacokinetics/pharmacodynamics of colistin and imipenem on mucoid and nonmucoid Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 55(9):4469–4474

    Article  Google Scholar 

  • Hengzhuang W, Wu H, Ciofu O et al (2012) In vivo pharmacokinetics/pharmacodynamics of colistin and imipenem in Pseudomonas aeruginosa biofilm infection. Antimicrob Agents Chemother 56(5):2683–2690

    Article  Google Scholar 

  • Hogan DA, Kolter R (2002) Pseudomonas-Candida interactions: an ecological role for virulence factors. Science 296(5576):2229–2232

    Article  CAS  Google Scholar 

  • Hogan DA, Wargo MJ, Beck N (2007) Bacterial biofilms on fungal surfaces. Biofilm Mode Life: Mech Adapt 13:235–245

    Google Scholar 

  • Høiby N (2011) Recent advances in the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. BMC Med 9:32

    Article  Google Scholar 

  • Hoiby N, Moser C, Bassi GL, Coenye T (2015) ESCMID* guideline for the diagnosis and treatment of biofilm infections 2014. Clin Microbiol Infect. https://doi.org/10.1016/j.cmi.2014.10.024

    Article  PubMed  Google Scholar 

  • Høiby N, Bjarnsholt T, Givskov M et al (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35(4):322–332

    Article  Google Scholar 

  • Høiby N, Ciofu O, Johansen HK et al (2011) The clinical impact of bacterial biofilms. Int J Oral Sci 3(2):55–65

    Article  Google Scholar 

  • Íñigo M, Del Pozo JL (2018) Fungal biofilms: from bench to bedside. Rev Esp Quimioter 31(Suppl 1):35–38

    PubMed  Google Scholar 

  • Jayasinghearachchi HS, Seneviratne G (2004) Can mushrooms fix atmospheric nitrogen? J Biosci 29(3):293–296

    Article  CAS  Google Scholar 

  • Liu D, Lau YL, Chau YK, Pacepavicius G (1994) Simple technique for estimation of biofilm accumulation. Bull Environ Contam Toxicol 53(6):913–918

    Article  CAS  Google Scholar 

  • Lohse MB, Gulati M, Johson AD, Nobile CJ (2018) Development and regulation of single- and multi-species Candida albicans biofilms. Nat Rev Microbiol 16:19–31. PMID: 29062072 PMCID: PMC5726514. https://doi.org/10.1038/nrmicro.2017.107

  • Lynch AS, Robertson GT (2008) Bacterial and fungal biofilm infections. Annu Rev Med 59:415–28. PMID: 17937586. http://doi.org/10.1146/annurev.med.59.110106.132000

  • Mengi S, Vohra P, Sawhney N, Singh V (2013) Biofilms: a diagnostic challenge in persistent infections. Int J Res Med Health Sci 2:2307–2383

    Google Scholar 

  • Mueller LN, de Brouwer JFC, Almeida JS, Stal LJ, Xavier JB (2006) Analysis of a marine phototrophic biofilm by confocal laser scanning microscopy using the new image quantification software PHLIP. BMC Ecol 6:1

    Article  Google Scholar 

  • Murray JM (2011) Methods for imaging thick specimens: confocal microscopy, deconvolution, and structured illumination. Cold Spring Harb Protoc 6(12):1399–1437

    Google Scholar 

  • Raab N, Bachelet I (2017) Resolving biofilm topography by native scanning electron microscopy. J Biol Methods 4(2):70. https://doi.org/10.14440/jbm.2017.173

    Article  Google Scholar 

  • Sadekuzzaman M, Yang S, Mizan MFR, Ha SD (2015) Current and recent advanced strategies for combating biofilms. Revs Food Sci Food Safe 14:491–509. https://doi.org/10.1111/1541-4337.12144

    Article  Google Scholar 

  • Scherlach K, Graupner K, Hertweck C (2013) Molecular bacteria-fungi interactions: effects on environment, food, and medicine. Annu Rev Microbiol 67:375–397

    Article  CAS  Google Scholar 

  • Schroeckh V, Scherlach K et al (2009) Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in aspergillus nidulans. Proc Natl Acad Sci USA 106(34):14558–14563

    Article  CAS  Google Scholar 

  • Seneviratne G, Zavahir JS, Weerasekara WMMS, Bandara MLMA (2008) Fungal-bacterial biofilms: their development for novel biotechnological applications. World J Microbiol Biotechnol 739–743

    Google Scholar 

  • Strathmann M, Wingender J, Flemming HC (2002) Application of fluorescently labelled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of Pseudomonas aeruginosa. J Microbiol Methods 50(3):237–248

    Article  CAS  Google Scholar 

  • Wingender J, Neu TR, Flemming HC (1999) What are the bacterial extracellular substances? In: Wingender J, Neu TR, Flemming HC (eds) Microbial extracellular polymeric substances: characterization, structure and function, 1st edn. Springer, Berlin, pp 1–19

    Chapter  Google Scholar 

  • Wu H, Moser C, Wang HZ, Høiby N, Song ZJ (2015) Strategies for combating bacterial biofilm infections. Int J Oral Sci 7:1–7. https://doi.org/10.1038/ijos.2014.65

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Liu Y, Wu H et al (2012) Combating biofilms. FEMS Immunol Med Microbiol 65(2):146–157

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manodeep Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sen, M., Yadav, P. (2019). Modern Methods in Microscopy for the Assessment of Biofilms. In: Kumar, S., Chandra, N., Singh, L., Hashmi, M., Varma, A. (eds) Biofilms in Human Diseases: Treatment and Control. Springer, Cham. https://doi.org/10.1007/978-3-030-30757-8_5

Download citation

Publish with us

Policies and ethics