Skip to main content

6D Pose Estimation for Industrial Applications

  • Conference paper
  • First Online:
New Trends in Image Analysis and Processing – ICIAP 2019 (ICIAP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11808))

Included in the following conference series:

  • 1458 Accesses

Abstract

Object pose estimation is important for systems and robots to interact with the environment where the main challenge of this task is the complexity of the scene caused by occlusions and clutters. A key challenge is performing pose estimation leveraging on both RGB and depth information: prior works either extract information from the RGB image and depth separately or use costly post-processing steps, limiting their performances in highly cluttered scenes and real-time applications. Traditionally, the pose estimation problem is tackled by matching feature points between 3D models and images. However, these methods require rich textured models. In recent years, the raising of deep learning has offered an increasing number of methods based on neural networks, such as DSAC++, PoseCNN, DenseFusion and SingleShotPose. In this work, we present a comparison between two recent algorithms, DSAC++ and DenseFusion, focusing on computational cost, performance and applicability in the industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.unity.com.

References

  1. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  2. Brachmann, E., Krull, A., Michel, F., Gumhold, S., Shotton, J., Rother, C.: Learning 6D object pose estimation using 3D object coordinates. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 536–551. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_35

    Chapter  Google Scholar 

  3. Brachmann, E., et al.: DSAC - differentiable RANSAC for camera localization. In: CVPR (2017)

    Google Scholar 

  4. Brachmann, E., Rother, C.: 6D camera localization via 3D surface regression. In: CVPR (2018)

    Google Scholar 

  5. Choi, C., Christensenb, H.I.: 3D textureless object detection and tracking: an edge-based approach. In: IROS (2012)

    Google Scholar 

  6. Choi, C., Christensenb, H.I.: RGB-D object pose estimation in unstructured environments. RAS 75, 595–613 (2016)

    Google Scholar 

  7. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  8. Gao, X., Hou, X., Tang, J., Cheng, H.: Complete solution classification for the perspective-three-point problem. TPAMI 25, 930–943 (2003)

    Article  Google Scholar 

  9. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The Kitti vision benchmark suite. In: CVPR (2012)

    Google Scholar 

  10. Glocker, B., Izadi, S., Shotton, J., Criminisi, A.: Real-time RGB-D camera relocalization. In: ISMAR (2013)

    Google Scholar 

  11. Hinterstoisser, S., et al.: Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes. In: ICCV (2011)

    Google Scholar 

  12. Hinterstoisser, S., et al.: Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 548–562. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37331-2_42

    Chapter  Google Scholar 

  13. Kehl, W., Milletari, F., Tombari, F., Ilic, S., Navab, N.: Deep learning of local RGB-D patches for 3D object detection and 6D pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 205–220. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_13

    Chapter  Google Scholar 

  14. Kendall, A., Grimes, M., Cipolla, R.: PoseNet: a convolutional network for real-time 6-DOF camera relocalization. In: ICCV (2015)

    Google Scholar 

  15. Lee, K.: Augmented reality in education and training. TechTrends 56, 13–21 (2012)

    Article  Google Scholar 

  16. Lee, Y.H., Medioni, G.: Wearable RGBD indoor navigation system for the blind. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8927, pp. 493–508. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16199-0_35

    Chapter  Google Scholar 

  17. Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: an accurate O(n) solution to the PnP problem. IJCV 81, 155 (2009)

    Article  Google Scholar 

  18. Li, C., Bai, J., Hager, G.D.: A unified framework for multi-view multi-class object pose estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 263–281. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_16

    Chapter  Google Scholar 

  19. Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV (1999)

    Google Scholar 

  20. Marchand, E., Uchiyama, H., Spindler, F.: Pose estimation for augmented reality: a hands-on survey. TVCG 22, 2633–2651 (2015)

    Google Scholar 

  21. Marder-Eppstein, E.: Project tango. In: SIGGRAPH (2016)

    Google Scholar 

  22. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: CVPR (2015)

    Google Scholar 

  23. Pavlakos, G., Zhou, X., Chan, A., Derpanis, K.G., Daniilidis, K.: 6-DOF object pose from semantic keypoints. In: ICRA (2017)

    Google Scholar 

  24. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: CVPR (2017)

    Google Scholar 

  25. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR (2016)

    Google Scholar 

  26. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: CVPR (2017)

    Google Scholar 

  27. Schwarz, M., Schulz, H., Behnke, S.: RGB-D object recognition and pose estimation based on pre-trained convolutional neural network features. In: ICRA (2015)

    Google Scholar 

  28. Song, S., Xiao, J.: Sliding shapes for 3D object detection in depth images. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 634–651. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_41

    Chapter  Google Scholar 

  29. Song, S., Xiao, J.: Deep sliding shapes for amodal 3D object detection in RGB-D images. In: CVPR (2016)

    Google Scholar 

  30. Tekin, B., Sinha, S.N., Fua, P.: Real-time seamless single shot 6D object pose prediction. In: CVPR (2018)

    Google Scholar 

  31. Wang, C., et al.: DenseFusion: 6D object pose estimation by iterative dense fusion. CoRR abs/1901.04780 (2019)

    Google Scholar 

  32. Webel, S., Bockholt, U., Engelke, T., Gavish, N., Olbrich, M., Preusche, C.: An augmented reality training platform for assembly and maintenance skills. RAS 61, 398–403 (2013)

    Google Scholar 

  33. Weiss, S., Achtelik, M.W., Chli, M., Siegwart, R.: Versatile distributed pose estimation and sensor self-calibration for an autonomous MAV. In: ICRA (2012)

    Google Scholar 

  34. Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: PoseCNN: a convolutional neural network for 6D object pose estimation in cluttered scenes. RSS (2018)

    Google Scholar 

  35. Zhu, M., et al.: Single image 3D object detection and pose estimation for grasping. In: ICRA (2014)

    Google Scholar 

Download references

Acknowledge

We thank The Edge Company, Srl for the support to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Carletti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cunico, F., Carletti, M., Cristani, M., Masci, F., Conigliaro, D. (2019). 6D Pose Estimation for Industrial Applications. In: Cristani, M., Prati, A., Lanz, O., Messelodi, S., Sebe, N. (eds) New Trends in Image Analysis and Processing – ICIAP 2019. ICIAP 2019. Lecture Notes in Computer Science(), vol 11808. Springer, Cham. https://doi.org/10.1007/978-3-030-30754-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30754-7_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30753-0

  • Online ISBN: 978-3-030-30754-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics