Advertisement

Slide Screening of Metastases in Lymph Nodes via Conditional, Fully Convolutional Segmentation

  • Gianluca GerardEmail author
  • Marco Piastra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11808)

Abstract

We assess the viability of applying a conditional algorithm to the segmentation of Whole Slide Images (WSI) for human histopathology. Our objective is designing a deep network for automatic screening of large sets sentinel lymph-nodes of WSIs to detect those worth inspecting by a pathologist. Ideally, such system should modify and correct its behavior based on a limited set of examples, to foster interactivity and the incremental tuning to specific diagnostic pipelines and clinical practices and, not the least, to alleviate the task of collecting a suitable annotated dataset for training. In contrast, ‘classical’ supervised techniques require a vast dataset upfront and their behavior cannot be adapted unless through extensive retraining. The approach presented here is based on conditional and fully convolutional networks, which can segment a query image by conditioning on a support set of sparsely annotated images, fed at inference time. We describe the target scenario, the architecture used, and we present some preliminary results of segmentation experiments conducted on the publicly-available Camelyon16 dataset.

Keywords

Deep convolutional neural networks Few-shot learning Segmentation Sparse annotation Lymph nodes Histopathological images 

References

  1. 1.
    Glocker, B., Zikic, D., Konukoglu, E., Haynor, D.R., Criminisi, A.: Vertebrae localization in pathological spine CT via dense classification from sparse annotations. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 262–270. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40763-5_33CrossRefGoogle Scholar
  2. 2.
    Liu, Y., et al.: Detecting cancer metastases on gigapixel pathology images. Technical report, arXiv (2017). arXiv:1703.02442
  3. 3.
    Rakelly, K., Shelhamer, E., Darrell, T., Efros, A.A., Levine, S.: Few-shot segmentation propagation with guided networks, May 2018. arXiv:1806.07373
  4. 4.
    Ren, M., et al.: Meta-learning for semi-supervised few-shot classification, March 2018. arXiv:1803.00676
  5. 5.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  6. 6.
    Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation, May 2016. arXiv:1605.06211
  7. 7.
    Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Ann. Rev. Biomed. Eng. 19, 221–248 (2017). http://www.ncbi.nlm.nih.gov/pubmed/28301734www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5479722CrossRefGoogle Scholar
  8. 8.
    Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching Networks for One Shot Learning, June 2016. arXiv:1606.04080
  9. 9.
    Xu, N., Price, B., Cohen, S., Yang, J., Huang, T.: Deep Interactive Object Selection, March 2016. arXiv:1603.04042

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Industriale e dell’InformazioneUniversità degli Studi di PaviaPaviaItaly

Personalised recommendations