Skip to main content

Gas Hydrate Models

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Understanding gas hydrate formation and disassociation processes are crucial to managing their risks or utilizing this technology for different applications. Conducting an experiment under all conditions are impractical, costly, and time-consuming. Therefore, it is more practical to use models that could predict all required parameters. In the present chapter, a basic review of the thermodynamic and kinetic models is given. The models are classified based on their mechanisms. The fundamental equations have been highlighted alongside with their possible application models for each chemical.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hammerschmidt EG (1934) Formation of gas hydrates in natural gas transmission lines. Ind Eng Chem 26:851–855

    Article  Google Scholar 

  2. Campbell JM (1992) Gas conditioning and processing-volume 2: the equipment modules. Campbell Petroleum Series.

    Google Scholar 

  3. Sloan ED, Koh CA (2008) Clathrate hydrates of natural gases third edition. CRC Press, Boca Raton, p 119

    Google Scholar 

  4. Carroll JJ (2009) Natural gas hydrates: a guide for engineers, 2nd edn. Gulf Professional Publishing, Burlington

    Google Scholar 

  5. Dyadin YA, Zhurko FV, Bondaryuk IV, Zhurko GO (1991) Clathrate formation in water-cyclic ether systems at high pressures. J Incl Phenom Mol Recogn Chem 10(1):39–56

    Article  Google Scholar 

  6. Barrer RM, Stuart WI (1957) Non-stoichiometric clathrate compounds of water. Proc R Soc Lond Ser A. Math Phys Sci 243(1233):172–189

    Google Scholar 

  7. Waals JVD, Platteeuw JC (1958) Clathrate solutions. Adv Chem Phys 1–57

    Google Scholar 

  8. Saito S, Marshall DR, Kobayashi R (1964) Hydrates at high pressures: Part II. Application of statistical mechanics to the study of the hydrates of methane, argon, and nitrogen. AIChE J 10(5):734–740

    Google Scholar 

  9. Parrish WR, Prausnitz JM (1972) Dissociation pressures of gas hydrates formed by gas mixtures. Ind Eng Chem Process Des Dev 11:26–35

    Article  Google Scholar 

  10. Holder GD, Corbin G, Papadopoulos KD (1980) Thermodynamic and molecular properties of gas hydrates from mixtures containing methane, argon, and krypton. Ind Eng Chem Fundam 19:282–286

    Article  Google Scholar 

  11. John VT, Papadopoulos KD, Holder GD (1985) A generalized model for predicting equilibrium conditions for gas hydrates. AIChE J 31:252–259

    Article  Google Scholar 

  12. Peng DY, Robinson DB (1976) A new two-constant equation of state. Ind Eng Chem Fundam 15:59–64

    Article  Google Scholar 

  13. Soave G (1972) Equilibrium constants from a modified Redlich-Kwong equation of state. Chem Eng Sci 27:1197–1203

    Article  Google Scholar 

  14. Valderrama JO (1990) A generalized Patel-Teja equation of state for polar and nonpolar fluids and their mixtures. J Chem Eng Jpn 23:87–91

    Article  Google Scholar 

  15. Nasrifar K, Bolland O (2006) Simplified hard-sphere and hard-sphere chain equations of state for engineering applications. Chem Eng Commun 193(10):1277–1293

    Article  Google Scholar 

  16. Kontogeorgis GM, Voutsas EC, Yakoumis IV, Tassios DP (1996) An equation of state for associating fluids. Ind Eng Chem Res 35:4310–4318

    Article  Google Scholar 

  17. Chapman WG, Gubbins KE, Jackson G, Radosz M (1989) SAFT: equation-of-state solution model for associating fluids. Fluid Phase Equilibria 52:31–38

    Article  Google Scholar 

  18. Michelsen ML (1990) A modified Huron-Vidal mixing rule for cubic equations of state. Fluid Phase Equilibria 60:213–219

    Article  Google Scholar 

  19. Dahl S, Michelsen ML (1990) High-pressure vapor-liquid equilibrium with a UNIFAC-based equation of state. AIChE J 36:1829–1836

    Article  Google Scholar 

  20. Saito Y (1996) Methane storage in hydrate phase with water soluble guests. In: Proceedings of 2nd international conference on natural gas hydrates, Toulouse, France, 2, pp 459–465

    Google Scholar 

  21. Oyama H, Shimada W, Ebinuma T, Kamata Y, Takeya S, Uchida T, … Narita H (2005) Phase diagram, latent heat, and specific heat of TBAB semiclathrate hydrate crystals. Fluid Phase Equilibria 234:131–135

    Google Scholar 

  22. Sloan Jr ED, Koh CA (2007) Clathrate hydrates of natural gases. CRC Press, Boca Raton

    Google Scholar 

  23. Partoon B (2017) Separation of carbon dioxide and methane via hydrate formation with utilization of modified spray reactor and thermodynamic promoters. Ph.D. Chemical Engineering Department, Universiti Teknologi PETRONAS, Perak, Malaysia

    Google Scholar 

  24. Pieroen AP (1955) Gas hydrates-approximate relations between heat of formation, composition and equilibrium temperature lowering by “inhibitors”. Recl Des Trav Chim Des Pays-Bas 74:995–1002

    Article  Google Scholar 

  25. Maddox RN, Moshfeghian M, Lopez E, Tu CH, Shariat A, Flynn AJ (1991) Predicting hydrate temperature at high inhibitor concentration. In: Proceedings of Laurance Reid gas conditioning conference, Norman, Oklahoma, pp 273–294

    Google Scholar 

  26. Javanmardi J, Moshfeghian M, Maddox RN (1998) Simple method for predicting gas-hydrate-forming conditions in aqueous mixed-electrolyte solutions. Energy Fuels 12:219–222

    Article  Google Scholar 

  27. Javanmardi J, Moshfeghian M, Maddox RN (1997) Simple method for predicting gas-hydrate-forming conditions in aqueous mixed-electrolyte solutions, 521–524

    Google Scholar 

  28. Nasrifar K, Moshfeghian M, Maddox RN (1998) Prediction of equilibrium conditions for gas hydrate formation in the mixtures of both electrolytes and alcohol. Fluid Phase Equilibria 146:1–13

    Article  Google Scholar 

  29. Partoon B, Wong NM, Sabil KM, Nasrifar K, Ahmad MR (2013) A study on thermodynamics effect of [EMIM]-Cl and [OH-C2MIM]-Cl on methane hydrate equilibrium line. Fluid Phase Equilibria 337:26–31

    Article  Google Scholar 

  30. Pitzer KS, Mayorga G (1993) Thermodynamics of electrolytes.: II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. In: Molecular structure and statistical thermodynamics: selected papers of Kenneth S Pitzer, pp 396–404

    Google Scholar 

  31. Zemaitis Jr JF, Clark DM, Rafal M, Scrivner NC (2010) Handbook of aqueous electrolyte thermodynamics: theory & application. Wiley, New York

    Google Scholar 

  32. Patwardhan VS, Kumar A (1986) A unified approach for prediction of thermodynamic properties of aqueous mixed-electrolyte solutions. Part I: vapor pressure and heat of vaporization. AIChE J 32:1419–1428

    Article  Google Scholar 

  33. Dickens GR, Quinby-Hunt MS (1997) Methane hydrate stability in pore water: a simple theoretical approach for geophysical applications. J Geophys Res Solid Earth 102:773–783

    Article  Google Scholar 

  34. Bavoh CB, Partoon B, Lal B, Gonfa G, Khor SF, Sharif AM (2017) Inhibition effect of amino acids on carbon dioxide hydrate. Chem Eng Sci 171:331–339

    Article  Google Scholar 

  35. Khan MS, Bavoh CB, Partoon B, Nashed O, Lal B, Mellon NB (2018) Impacts of ammonium based ionic liquids alkyl chain on thermodynamic hydrate inhibition for carbon dioxide rich binary gas. J Mol Liq 261:283–290

    Article  Google Scholar 

  36. Mainusch S, Peters CJ, de Swaan Arons J, Javanmardi J, Moshfeghian M (1997) Experimental determination and modeling of methane hydrates in mixtures of acetone and water. J Chem Eng Data 42:948–950

    Article  Google Scholar 

  37. Snyder LR (1974) Classification of the solvent properties of common liquids. J Chromatogr A 92:223–230

    Article  Google Scholar 

  38. Sun C, Chen G, Guo T, Lin W, Chen J (2002) Kinetics of methane hydrate decomposition. J Chem Ind Eng-China 53:899–903

    Google Scholar 

  39. Vysniauskas A, Bishnoi PR (1985) Kinetics of ethane hydrate formation. Chem Eng Sci 40:299–303

    Article  Google Scholar 

  40. Lekvam K, Ruoff P (1993) A reaction kinetic mechanism for methane hydrate formation in liquid water. J Am chem Soc 115:8565–8569

    Article  Google Scholar 

  41. Boxall J, Davies S, Koh C, Sloan ED (2009) Predicting when and where hydrate plugs form in oil-dominated flowlines. SPE Projects Facil Constr 4:80–86

    Article  Google Scholar 

  42. Zerpa LE, Sloan ED, Sum AK, Koh CA (2012) Overview of CSMHyK: a transient hydrate formation model. J Pet Sci Eng 98:122–129

    Article  Google Scholar 

  43. Yang D, Le LA, Martinez RJ, Currier RP, Spencer DF (2011) Kinetics of CO2 hydrate formation in a continuous flow reactor. Chem Eng J 172:144–157

    Article  Google Scholar 

  44. Englezos P, Kalogerakis N, Dholabhai PD, Bishnoi PR (1987) Kinetics of gas hydrate formation from mixtures of methane and ethane. Chem Eng Sci 42:2659–2666

    Article  Google Scholar 

  45. Englezos P, Kalogerakis N, Dholabhai PD, Bishnoi PR (1987) Kinetics of formation of methane and ethane gas hydrates. Chem Eng Sci 42:2647–2658

    Article  Google Scholar 

  46. Skovborg P, Rasmussen P (1994) A mass transport limited model for the growth of methane and ethane gas hydrates. Chem Eng Sci 49:1131–1143

    Article  Google Scholar 

  47. Herri JM, Pic JS, Gruy F, Cournil M (1999) Methane hydrate crystallization mechanism from in-situ particle sizing. AIChE J 45:590–602

    Article  Google Scholar 

  48. Clarke MA, Bishnoi PR (2005) Determination of the intrinsic kinetics of CO2 gas hydrate formation using in situ particle size analysis. Chem Eng Sci 60:695–709

    Article  Google Scholar 

  49. Turner DJ, Miller KT, Sloan ED (2009) Methane hydrate formation and an inward growing shell model in water-in-oil dispersions. Chem Eng Sci 64:3996–4004

    Article  Google Scholar 

  50. Uchida T, Ebinuma T, Kawabata JI, Narita H (1999) Microscopic observations of formation processes of clathrate-hydrate films at an interface between water and carbon dioxide. J Crystal Growth 204:348–356

    Article  Google Scholar 

  51. Mori YH (2001) Estimating the thickness of hydrate films from their lateral growth rates: application of a simplified heat transfer model. J Crystal Growth 223(1–2):206–212

    Article  Google Scholar 

  52. Peng BZ, Dandekar A, Sun CY, Luo H, Ma QL, Pang WX, Chen GJ (2007) Hydrate film growth on the surface of a gas bubble suspended in water. J Phys Chem B 111:12485–12493

    Article  Google Scholar 

  53. Mochizuki T, Mori YH (2006) Clathrate-hydrate film growth along water/hydrate-former phase boundaries—numerical heat-transfer study. J Crystal Growth 290:642–652

    Article  Google Scholar 

  54. Hashemi S, Macchi A, Servio P (2007) Gas hydrate growth model in a semibatch stirred tank reactor. Ind Eng Chem Res 46:5907–5912

    Article  Google Scholar 

  55. Bergeron S, Servio P (2008) Reaction rate constant of propane hydrate formation. Fluid Phase Equilibria 265:30–36

    Article  Google Scholar 

  56. Salamatin AN, Hondoh T, Uchida T, Lipenkov VY (1998) Post-nucleation conversion of an air bubble to clathrate air–hydrate crystal in ice. J Crystal Growth 193:197–218

    Article  Google Scholar 

  57. Wang X, Schultz AJ, Halpern Y (2002) Kinetics of methane hydrate formation from polycrystalline deuterated ice. J Phys Chem A 106:7304–7309

    Article  Google Scholar 

  58. Staykova DK, Kuhs WF, Salamatin AN, Hansen T (2003) Formation of porous gas hydrates from ice powders: diffraction experiments and multistage model. J Phys Chem B 107:10299–10311

    Article  Google Scholar 

  59. Shindo Y, Lund PC, Fujioka Y, Komiyama H (1993) Kinetics of formation of CO2 hydrate. Energy Conver Manag 34:1073–1079

    Article  Google Scholar 

  60. Shindo Y et al (1993) Kinetics and mechanism of the formation of CO2 hydrate. Int J Chem Kinet 25(9):777–782

    Google Scholar 

  61. Shindo Y, Sakaki K, Fujioka Y, Komiyama H (1996) Kinetics of the formation of CO2 hydrate on the surface of liquid CO2 droplet in water. Energy Convers Manag 37:485–489

    Article  Google Scholar 

  62. Lund PC, Shindo Y, Fujioka Y, Komiyama H (1994) Study of the pseudo-steady-state kinetics of CO2 hydrate formation and stability. Int J Chem Kinet 26:289–297

    Article  Google Scholar 

  63. Dalmazzone D, Hamed N, Dalmazzone C (2009) DSC measurements and modelling of the kinetics of methane hydrate formation in water-in-oil emulsion. Chem Eng Sci 64(9):2020–2026

    Article  Google Scholar 

  64. Teng H, Yamasaki A, Shindo Y (1996) Stability of the hydrate layer formed on the surface of a CO2 droplet in high-pressure, low-temperature water. Chem Eng Sci 51:4979–4986

    Article  Google Scholar 

  65. Freer EM, Selim MS, Sloan ED Jr (2001) Methane hydrate film growth kinetics. Fluid Phase Equilib 185:65–75

    Article  Google Scholar 

  66. Mu L, Li S, Ma QL, Zhang K, Sun CY, Chen GJ, … Yang LY (2014) Experimental and modeling investigation of kinetics of methane gas hydrate formation in water-in-oil emulsion. Fluid Phase Equilib 362:28–34

    Google Scholar 

  67. Rempel AW, Buffett BA (1997) Formation and accumulation of gas hydrate in porous media. J Geophys Res Solid Earth 102:10151–10164

    Article  Google Scholar 

  68. Yin Z, Chong ZR, Tan HK, Linga P (2016) Review of gas hydrate dissociation kinetic models for energy recovery. J Nat Gas Sci Eng 35:1362–1387

    Article  Google Scholar 

  69. Liu X, Flemings PB (2007) Dynamic multiphase flow model of hydrate formation in marine sediments. J Geophys Res Solid Earth, 112

    Google Scholar 

  70. Uddin M, Coombe D, Law D, Gunter B (2008) Numerical studies of gas hydrate formation and decomposition in a geological reservoir. J Energy Resour Technol 130:032501

    Article  Google Scholar 

  71. Zerpa LE, Rao I, Aman ZM, Danielson TJ, Koh CA, Sloan ED, Sum AK (2013) Multiphase flow modeling of gas hydrates with a simple hydrodynamic slug flow model. Chem Eng Sci 99:298–304

    Article  Google Scholar 

  72. Ribeiro CP Jr, Lage PL (2008) Modelling of hydrate formation kinetics: state-of-the-art and future directions. Chem Eng Sci 63:2007–2034

    Article  Google Scholar 

  73. Yin Z, Khurana M, Tan HK, Linga P (2018) A review of gas hydrate growth kinetic models. Chem Eng J 342:9–29

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Partoon, B., Sahith, S.J.K., Lal, B., Maulud, A.S. (2020). Gas Hydrate Models. In: Chemical Additives for Gas Hydrates. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-30750-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30750-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30749-3

  • Online ISBN: 978-3-030-30750-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics