Circadian Rhythm: Light-Dark Cycles



The systems biology study of the current epidemic of chronic disease has exposed significant pathophysiology related to disorders of the circadian rhythm. Most commonly recognized are sleep disorders within the science of sleep medicine. The master biological clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus gland and is governed by light cues through the retina. It influences a wide variety of functions, including sleep, arousal, feeding, and a myriad of metabolic processes. The focus of this chapter is to present evidence for the influences that nutrients and lifestyle have on the 24-hour circadian rhythm cycle and to provide tools to enable nutritional interventions to help an individual to bring a balance toward wellness. Diet and lifestyle factors influencing sleep and circadian rhythm are sleep quality, nutrient timing and composition, B vitamins, minerals, fats, and phytonutrients, as well as light, melatonin, and sleep habits. Optimizing these factors has been shown as effective treatment for sleep disorders. Food has been shown to have a strong effect on circadian rhythms. If the composition and timing of food eaten are not in phase with the light-dark cycle, a disruption in metabolism can occur. Modern lifestyle, with artificial light and erratic eating patterns, can upset the biological circadian system. Many questions remain unanswered regarding chrononutrition, and there is a need for further human studies. A continuing partnership between chronobiologists and nutritionists will shed light on the connection between nutrition and the circadian system, with the ultimate goal of reducing the burden of chronic diseases.


Circadian rhythm Chronobiology Chrononutrition Circadian clocks Circadian rhythm sleep disorders Advanced sleep phase syndrome Shift work sleep disorders Delayed sleep phase syndrome Melatonin Fasting Sleep apnea 


  1. 1.
    Feillet C, van der Horst GT, Levi F, Rand DA, Delaunay F. Coupling between the circadian clock and cell cycle oscillators: implication for healthy cells and malignant growth. Front Neurol. 2015;6:96.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sunderram J, Sofou S, Kamisoglu K, Karantza V, Androulakis IP. Time-restricted feeding and the realignment of biological rhythms: translational opportunities and challenges. J Transl Med. 2014;12:79.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Grechez-Cassiau A, Rayet B, Guillaumond F, Teboul M, Delaunay F. The circadian clock component BMAL1 is a critical regulator of p21WAF1/CIP1 expression and hepatocyte proliferation. J Biol Chem. 2008;283(8):4535–42.CrossRefGoogle Scholar
  4. 4.
    Monk TH. Enhancing circadian zeitgebers. Sleep. 2010;33(4):421–2.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ribas-Latre A, Eckel-Mahan K. Interdependence of nutrient metabolism and the circadian clock system: importance for metabolic health. Mol Metab. 2016;5(3):133–52.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Grechez-Cassiau A, Fillet C, Guerin S, Delaunay F. The hepatic circadian clock regulates the choline kinase α gene through the BMAL1-REV-ERBα axis. Chronobiol Int. 2015;32:6.CrossRefGoogle Scholar
  7. 7.
    Innominato PF, Focan C, Gorlia T, et al. Circadian rhythm in rest and activity: a biological correlate of quality of life and a predictor of survival in patients with metastatic colorectal cancer. Cancer Res. 2009;69(11):4700–7.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Siffroi-Fernandez S, Dulong S, Li X-M, et al. Functional genomics identify Birc5/Survivin as a candidate gene involved in the chronotoxicity of cyclin-dependent kinase inhibitors. Cell Cycle. 2014;13(6):984–91.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Litlekalsoy J, Rostad K, Kalland KH, Hostmark JG, Laerum OD. Expression of circadian clock genes and proteins in urothelial cancer is related to cancer-associated genes. BMC Cancer. 2016;16:549.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
  11. 11.
    Etain B, Dumaine A, Bellivier F, et al. Genetic and functional abnormalities of the melatonin biosynthesis pathway in patients with bipolar disorder. Hum Mol Genet. 2012;21(18):4030–7.CrossRefGoogle Scholar
  12. 12.
    Zisapel N. Circadian rhythm sleep disorders: pathophysiology and potential approaches to management. CNS Drugs. 2001;15(4):311–28.CrossRefGoogle Scholar
  13. 13.
    Okawa M, Mishima K, Nanami T, et al. Vitamin B12 treatment for sleep-wake rhythm disorders. Sleep. 1990;13(1):15–23.CrossRefGoogle Scholar
  14. 14.
    Oike H, Oishi K, Kobori M. Nutrients, clock genes and chrononutrition. Curr Nutr Rep. 2014;3:204–12.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Johnston JD, Ordovas JM, Scheer FA, Turek FW. Circadian rhythms, metabolism, and chrononutrition in rodents and humans. Adv Nutr. 2016;7:399–406.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Asher G, Sassone-Corsi P. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell. 2015;161:84–92.CrossRefGoogle Scholar
  17. 17.
    Potter GD, Cade JE, Grant PJ, Hardie LJ. Nutrition and the circadian system. Br J Nutr. 2016;116(3):434–42.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 2012;35:445–62.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Regestein QR, Monk TH. Delayed sleep phase syndrome: a review of its clinical aspects. Am J Psychiatry. 1995;152(4):602–8.CrossRefGoogle Scholar
  20. 20.
    Weitzman ED, Czeisler CA, Coleman RM, et al. Delayed sleep phase syndrome. A chronobiological disorder with sleep-onset insomnia. Arch Gen Psychiatry. 1981;38(7):737–46.CrossRefGoogle Scholar
  21. 21.
    Ando K, Kripke DF, Ancoli-Israel S. Estimated prevalence of delayed and advanced sleep phase syndromes. Sleep Res. 1995;24:509.Google Scholar
  22. 22.
    Schrader H, Bovim G, Sand T. The prevalence of delayed and advanced sleep phase syndromes. J Sleep Res. 1993;2(1):51–5.CrossRefGoogle Scholar
  23. 23.
    Archer SN, Robilliard DL, Skene DJ, et al. A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep. 2003;26(4):413–5.CrossRefGoogle Scholar
  24. 24.
    Hohjoh H, Takasu M, Shishikura K, et al. Significant association of the arylalkylamine N-acetyltransferase (AA-NAT) gene with delayed sleep phase syndrome. Neurogenetics. 2003;4(3):151–3.CrossRefGoogle Scholar
  25. 25.
    Iwase T, Kajimura N, Uchiyama M, et al. Mutation screening of the human clock gene in circadian rhythm sleep disorders. Psychiatry Res. 2002;109(2):121–8.CrossRefGoogle Scholar
  26. 26.
    Ebisawa T, Uchiyama M, Kajimura N, et al. Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep. 2001;2(4):342–6.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Takahashi Y, Hohjoh H, Matsuura K. Predisposing factors in delayed sleep phase syndrome. Psychiatry Clin Neurosci. 2000;54(3):356–8.CrossRefGoogle Scholar
  28. 28.
    Bliwise DL, King AC, Harris RB, Haskell WL. Prevalence of self-reported poor sleep in a healthy population aged 50-65. Soc Sci Med. 1992;34(1):49–55.CrossRefGoogle Scholar
  29. 29.
    Toh KL, Jones CR, He Y, et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science. 2001;291(5506):1040–3.CrossRefGoogle Scholar
  30. 30.
    Martens H, Endlich H, Hildebrandt G. Sleep-wake distribution in blind subjects with and without sleep complaints. Sleep Res. 1990;9:398.Google Scholar
  31. 31.
    Akerstedt T, Torsvall L. Shiftwork. Shift dependent Well-being and individual differences. Ergonomics. 1981;24:265–73.CrossRefGoogle Scholar
  32. 32.
    Witting W, Kwa IH, Eikelenboom P, Mirmiran M, Swaab DF. Alterations in the circadian rest-activity rhythm in aging and Alzheimer’s disease. Biol Psychiatry. 1990;27(6):563–72.CrossRefGoogle Scholar
  33. 33.
    Hoogendijk WJ, van Someren EJ, Mirmiran M, et al. Circadian rhythm-related behavioral disturbances and structural hypothalamic changes in Alzheimer’s disease. Int Psychogeriatr. 1996;8(Suppl 3):245–52; discussion 269–72.PubMedGoogle Scholar
  34. 34.
    van Someren EJ, Hagebeuk EE, Lijzenga C, et al. Circadian rest-activity rhythm disturbances in Alzheimer’s disease. Biol Psychiatry. 1996;40(4):259–70.CrossRefGoogle Scholar
  35. 35.
    Pollak CP, Stokes PE. Circadian rest-activity rhythms in demented and nondemented older community residents and their caregivers. J Am Geriatr Soc. 1997;45(4):446–52.CrossRefGoogle Scholar
  36. 36.
    Butler MP, Smales C, Wu H, et al. The circadian system contributes to apnea lengthening across the night in obstructive sleep apnea. Sleep. 2015;38(11):1793–801.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Mateika JH, Syed Z. Intermittent hypoxia, respiratory plasticity and sleep apnea in humans: present knowledge and future investigations. Respir Physiol Neurobiol. 2013;188(3):289–300.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Martin A, Carpentier A, Guissard N, van HJ, Duchateau J. Effect of time of day on force variation in a human muscle. Muscle Nerve. 1999;22:1380–7.CrossRefGoogle Scholar
  39. 39.
    Zhang X, Dube TJ, Esser KA. Working around the clock: circadian rhythms and skeletal muscle. J Appl Physiol. 2009;107:1647–54.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Mitchell LJ, Davidson ZE, Bonham M, et al. Weight loss from lifestyle interventions and severity of sleep apnoea: a systematic review and meta-analysis. Sleep Med. 2014;15(10):1173–83.CrossRefGoogle Scholar
  41. 41.
    Entzian P, Linnemann K, Schlaak M, Zabel P. Obstructive sleep apnea syndrome and circadian rhythms of hormones and cytokines. Am J Respir Crit Care Med. 1996;153(3):1080–6.CrossRefGoogle Scholar
  42. 42.
    Armstrong SM, McNulty OM, Guardiola-Lemaitre B, Redman JR. Successful use of S20098 and melatonin in an animal model of delayed sleep-phase syndrome (DSPS). Pharmacol Biochem Behav. 1993;46(1):45–9.CrossRefGoogle Scholar
  43. 43.
    Oldani A, Ferini-Strambi L, Zucconi M, et al. Melatonin and delayed sleep phase syndrome: ambulatory polygraphic evaluation. Neuro Rep. 1994;6(1):132–4.Google Scholar
  44. 44.
    Kamei Y, Hayakawa T, Urata J, et al. Melatonin treatment for circadian rhythm sleep disorders. Psychiatry Clin Neurosci. 2000;54(3):381–2.CrossRefGoogle Scholar
  45. 45.
    Nagtegaal JE, Laurant MW, Kerkhof GA, et al. Effects of melatonin on the quality of life in patients with delayed sleep phase syndrome. J Psychosom Res. 2000;48(1):45–50.CrossRefGoogle Scholar
  46. 46.
    Kim SM, Neuendorff N, Chapkin RS, Earnest DJ. Role of inflammatory signaling in the differential effects of saturated and polyunsaturated fatty acids on peripheral circadian clocks. EBioMedicine. 2016;7:100–11.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Jordan SD, Lamia KA. AMPK at the crossroads of circadian clocks and metabolism. Mol Cell Endocrinol. 2013;366(2):163–9.CrossRefGoogle Scholar
  48. 48.
    Held K, Antonijevic IA, Künzel H, et al. Oral Mg(2+) supplementation reverses age-related neuroendocrine and sleep EEG changes in humans. Pharmacopsychiatry. 2002;35(4):135–43.CrossRefGoogle Scholar
  49. 49.
    Beydoun MA, Gamaldo AA, Canas JA, et al. Serum nutritional biomarkers and their associations with sleep among US adults in recent national surveys. PLoS One. 2014;9(8):e103490.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Bladé C, Aragonès G, Arola-Arnal A, et al. Proanthocyanidins in health and disease. Biofactors. 2016;42(1):5–12.PubMedGoogle Scholar
  51. 51.
    Chung S, Yao H, Caito S, et al. Regulation of SIRT1 in cellular functions: role of polyphenols. Arch Biochem Biophys. 2010;501(1):79–90.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ford ES, Wheaton AG, Chapman DP, et al. Associations between self-reported sleep duration and sleeping disorder with concentrations of fasting and 2-h glucose, insulin, and glycosylated hemoglobin among adults without diagnosed diabetes. J Diabetes. 2014;6(4):338–50.CrossRefGoogle Scholar
  53. 53.
    Herrmann TS, Bean ML, Black TM, Wang P, Coleman RA. High glycemic index carbohydrate diet alters the diurnal rhythm of leptin but not insulin concentrations. Exp Biol Med (Maywood). 2001;226(11):1037–44.CrossRefGoogle Scholar
  54. 54.
    Abbondante S, Eckel-Mahan KL, Ceglia NJ, Baldi P, Sassone-Corsi P. Comparative circadian metabolomics reveal differential effects of nutritional challenge in the serum and liver. J Biol Chem. 2016;291(6):2812–28.CrossRefGoogle Scholar
  55. 55.
    Thaiss CA, Zeevi D, Levy M, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 2014;159:514–29.CrossRefGoogle Scholar
  56. 56.
    Leone V, Gibbons SM, Martinez K, et al. Effects of diurnal variation of gut microbes and high fat feeding on host circadian clock function and metabolism. Cell Host Microbe. 2015;17(5):681–9.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Morgan L, Arendt J, Owens D, et al. Effects of the endogenous clock and sleep time on melatonin, insulin, glucose and lipid metabolism. J Endocrinol. 1998;157:443–51.CrossRefGoogle Scholar
  58. 58.
    Tanabe K, Kitagawa E, Wada M, et al. Antigen exposure in the late light period induces severe symptoms of food allergy in an ova-allergic mouse model. Sci Rep. 2015;5:14424.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Scheer FA, Morris CJ, Shea SA. The internal circadian clock increases hunger and appetite in the evening independent of food intake and other behaviors. Obesity (Silver Spring). 2013;21:421–3.CrossRefGoogle Scholar
  60. 60.
    Hatori M, Vollmers C, Zarrinpar A, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;5:848–60.CrossRefGoogle Scholar
  61. 61.
    Xu K, DiAngelo JR, Hughes ME, et al. The circadian clock interacts with metabolic physiology to influence reproductive fitness. Cell Metab. 2011;13:639–54.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Yoshida C, Shikata N, Seki S, Koyama N, Noguchi Y. Early nocturnal meal skipping alters the peripheral clock and increases lipogenesis in mice. Nutr Metab (Lond). 2012;9(1):78.CrossRefGoogle Scholar
  63. 63.
    Timlin MT, Pereira MA, Story M, Neumark-Sztainer D. Breakfast eating and weight change in a 5-year prospective analysis of adolescents: project EAT (Eating Among Teens). Pediatrics. 2008;121(3):e638–45.CrossRefGoogle Scholar
  64. 64.
    Mattson MP, Allison DB, Fontana L, et al. Meal frequency and timing in health and disease. Proc Natl Acad Sci U S A. 2014;111(47):16647–53.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Marcheva B, Ramsey KM, Peek CB, et al. Circadian clocks and metabolism. Handb Exp Pharmacol. 2013;217:127–55.CrossRefGoogle Scholar
  66. 66.
    Yoshizaki T, Tada Y, Hida A, et al. Effects of feeding schedule changes on the circadian phase of the cardiac autonomic nervous system and serum lipid levels. Eur J Appl Physiol. 2013;113(10):2603–11.CrossRefGoogle Scholar
  67. 67.
    Jakubowicz D, Barnea M, Wainstein J, Froy O. High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obesity (Silver Spring). 2013;21(12):2504–12.CrossRefGoogle Scholar
  68. 68.
    Garaulet M, Gomez-Abellan P, Alburquerque-Bejar JJ, et al. Timing of food intake predicts weight loss effectiveness. Int J Obes. 2013;37(4):604–11.CrossRefGoogle Scholar
  69. 69.
    Wang JB, Patterson RE, Ang A, et al. Timing of energy intake during the day is associated with the risk of obesity in adults. J Hum Nutr Diet. 2014;27(Suppl 2):255–62.CrossRefGoogle Scholar
  70. 70.
    Varady KA, Bhutani S, Church EC, et al. Short-term modified alternate-day fasting: a novel dietary strategy for weight loss and cardioprotection in obese adults. Am J Clin Nutr. 2009;90:1138–43.CrossRefGoogle Scholar
  71. 71.
    Bhutani S, Klempel MC, Kroeger CM, et al. Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans. Obesity. 2013;21:1370–9.CrossRefGoogle Scholar
  72. 72.
    Anson RM, Guo Z, de Cabo R, et al. Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc Natl Acad Sci U S A. 2003;100:6216–20.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Mekary RA, Giovannucci E, Willet WC, et al. Eating patterns and type 2 diabetes risk in men: breakfast omission, eating frequency, and snacking. Am Soc Nutr. 2012;95(5):1182–9.Google Scholar
  74. 74.
    Moro T, Tinsley G, Bianco A, et al. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J Transl Med. 2016;14:290.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Takahashi JS, Hong H-K, Ko CH, McDearmon EL. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet. 2008;9(10):764–75.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Valladares M, Obregon AM, Chaput JP. Association between genetic variants of the clock gene and obesity and sleep duration. J Physiol Biochem. 2015;71(4):855–60.CrossRefGoogle Scholar
  77. 77.
    Patel SA, Velingkaar N, Makwana K, Chaudhari A, Kondratov R. Calorie restriction regulates circadian clock gene expression through BMAL1 dependent and independent mechanisms. Sci Rep. 2016;6:25970.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Eckel-Mahan KL, Patel VR, de Mateo S, et al. Reprogramming of the circadian clock by nutritional challenge. Cell. 2013;155(7):1464–78.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Scheer FA, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. PNAS. 2009;106(11):4453–8.CrossRefGoogle Scholar
  80. 80.
    Gibbs M, Harrington D, Starkey S, Williams P, Hampton S. Diurnal postprandial responses to low and high glycaemic index mixed meals. Clin Nutr. 2014;33(5):889–94.CrossRefGoogle Scholar
  81. 81.
    Kohsaka A, Laposky AD, Ramsey KM, et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 2007;6(5):414–21.CrossRefGoogle Scholar
  82. 82.
    Wilking M, Ndiaye M, Mukhtar H, Ahmad N. Circadian rhythm connections to oxidative stress: implications for human health. Antioxid Redox Signal. 2013;19(2):192–208.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Golem DL, Martin-Biggers JT, Koenings MM, Davis KF, Byrd-Bredbenner C. An integrative review of sleep for nutrition professionals. Adv Nutr. 2014;5(6):742–59.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Richards J, Gumz ML. Mechanism of the circadian clock in physiology. Am J Physiol Regul Integr Comp Physiol. 2013;304(12):R1053–64.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    la Fleur SE, Kalsbeek A, Wortel J, et al. A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus. Diabetes. 2001;50:1237–43.CrossRefGoogle Scholar
  86. 86.
    Coomans CP, van den Berg SA, Lucassen EA, et al. The suprachiasmatic nucleus controls circadian energy metabolism and hepatic insulin sensitivity. Diabetes. 2012;62:1102–8.CrossRefGoogle Scholar
  87. 87.
    Coomans CP, van den Berg SA, Houben T, et al. Detrimental effects of constant light exposure and high-fat diet on circadian energy metabolism and insulin sensitivity. FASEB J. 2013;27(4):1721–32.CrossRefGoogle Scholar
  88. 88.
    Bouatia-Naj N, Bonnefond A, Cavalcanti-Proenca C, et al. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat Genet. 2008;41:89–94.CrossRefGoogle Scholar
  89. 89.
    Liu C, Wu Y, Li H, et al. MTNR1B rs10830963 is associated with fasting plasma glucose, HbA1C and impaired beta-cell function in Chinese Hans from Shanghai. BMC Med Genet. 2010;11:59.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Peschke E, Bahr I, Muhlbauer E. Experimental and clinical aspects of melatonin and clock genes in diabetes. J Pineal Res. 2015;59(1):1–23.CrossRefGoogle Scholar
  91. 91.
    Martino TA, Tata N, Belsham DD, et al. Disturbed diurnal rhythm alters gene expression and exacerbates cardiovascular disease with rescue by resynchronization. Hypertension. 2007;49:1104–13.CrossRefGoogle Scholar
  92. 92.
    Martino TA, Tata N, Simpson JA, et al. The primary benefits of angiotensin-converting enzyme inhibition on cardiac remodeling occur during sleep time in murine pressure overload hypertrophy. J Am Coll Cardiol. 2011;57(20):2020–8.CrossRefGoogle Scholar
  93. 93.
    Durgan DJ, Young ME. The cardiomyocyte circadian clock: emerging roles in health and disease. Circ Res. 2010;106(4):647–58.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Wang A, Arah OA, Kauhanen J, Krause N. Shift work and 20-year incidence of acute myocardial infarction: results from the Kuopio Ischemic Heart Disease Risk Factor Study. Occup Environ Med. 2016;73(9):588–94.CrossRefGoogle Scholar
  95. 95.
    Wang A, Arah OA, Kauhanen J, Krause N. Work schedules and 11-year progression of carotid atherosclerosis in middle-aged Finnish men. Am J Ind Med. 2015;58(1):1–13.CrossRefGoogle Scholar
  96. 96.
    Kantermann T, Duboutay F, Haubruge D, et al. Atherosclerotic risk and social jetlag in rotating shift-workers: first evidence from a pilot study. Work. 2013;46(3):273–82.CrossRefGoogle Scholar
  97. 97.
    Fujino Y, Iso H, Tamakoshi A, et al. A prospective cohort study of shift work and risk of ischemic heart disease in Japanese male workers. Am J Epidemiol. 2006;164(2):128–35.CrossRefGoogle Scholar
  98. 98.
    Lieu SJ, Curhan GC, Schernhammer ES, Forman JP. Rotating night shift work and disparate hypertension risk in African-Americans. J Hypertens. 2012;30(1):61–6.CrossRefGoogle Scholar
  99. 99.
    Richards J, Greenlee MM, Jeffers LA, et al. Inhibition of αENaC expression and ENaC activity following blockade of the circadian clock-regulatory kinases CK1δ/ε. Am J Physiol Renal Physiol. 2012;303(7):F918–27.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Marques FZ, Campain AE, Tomaszewski M, et al. Gene expression profiling reveals renin mRNA overexpression in human hypertensive kidneys and a role for microRNAs. Hypertension. 2011;58(6):1093–8.CrossRefGoogle Scholar
  101. 101.
    Nader N, Chrousos GP, Kino T. Interactions of the circadian CLOCK system and the HPA axis. Trends Endocrinol Metab. 2010;21(5):277–86.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Pezuk P, Mohawk JA, Wang LA, et al. Glucocorticoids as entraining signals for peripheral circadian oscillators. Endocrinology. 2012;153(10):4775–83.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Balsalobre A, Brown SA, Marcacci L, et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science. 2000;289:2344–7.CrossRefGoogle Scholar
  104. 104.
    Son GH, Chung S, Kim K. The adrenal peripheral clock: glucocorticoid and the circadian timing system. Front Neuroendocrinol. 2011;32:451–65.CrossRefGoogle Scholar
  105. 105.
    Ackermann K, Revell VL, Lao O, et al. Diurnal rhythms in blood cell populations and the effect of acute sleep deprivation in healthy young men. Sleep. 2012;35(7):933–40.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Logan RW, Zhang C, Murugan S, et al. Chronic shift-lag alters the circadian clock of NK cells and promotes lung cancer growth in rats. J Immunol. 2012;188(6):2583–91.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Peruquetti RL, de Mateo S, Sassone-Corsi P. Circadian proteins CLOCK and BMAL1 in the chromatoid body, a RNA processing granule of male germ cells. PLoS One. 2012;7(8):e42695.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Kennaway DJ, Boden MJ, Varcoe TJ. Circadian rhythms and fertility. Mol Cell Endocrinol. 2012;349:56–61.CrossRefGoogle Scholar
  109. 109.
    Alvarez JD, Hansen A, Ord T, et al. The circadian clock protein BMAL1 is necessary for fertility and proper testosterone production in mice. J Biol Rhythm. 2008;23(1):26–36.CrossRefGoogle Scholar
  110. 110.
    Boden MJ, Kennaway DJ. Circadian rhythms and reproduction. Reproduction. 2006;132:379–92.CrossRefGoogle Scholar
  111. 111.
    Bedrosian TA, Nelson RJ. Timing of light exposure affects mood and brain circuits. Transl Psychiatry. 2017;7(1):e1017.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Farokhnezhad Afshar P, Bahramnezhad F, Asgari P, et al. Effect of white noise on sleep in patients admitted to a coronary care. J Caring Sci. 2016;5(2):103–9.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Lillehei AS, Halcón LL, Savik K, et al. Effect of inhaled lavender and sleep hygiene on self-reported sleep issues: a randomized controlled trial. J Altern Complement Med. 2015;21(7):430–8.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Perl O, Arzi A, Sela L, et al. Odors enhance slow-wave activity in non-rapid eye movement sleep. J Neurophysiol. 2016;115(5):2294–302.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Dyer J, Cleary L, McNeill S, Ragsdale-Lowe M, Osland C. The use of aromasticks to help with sleep problems: a patient experience survey. Complement Ther Clin Pract. 2016;22:51–8.CrossRefGoogle Scholar
  116. 116.
    Kasper S, Anghelescu I, Dienel A. Efficacy of orally administered Silexan in patients with anxiety-related restlessness and disturbed sleep--a randomized, placebo-controlled trial. Eur Neuropsychopharmacol. 2015;25(11):1960–7.CrossRefGoogle Scholar
  117. 117.
    Fairbrother K, Cartner B, Alley JR, et al. Effects of exercise timing on sleep architecture and nocturnal blood pressure in prehypertensives. Vasc Health Risk Manag. 2014;10:691–8.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Hanlon EC, Tasali E, Leproult R, et al. Sleep restriction enhances the daily rhythm of circulating levels of Endocannabinoid 2-Arachidonoylglycerol. Sleep. 2016;39(3):653–64.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Clifford LM, Beebe DW, Simon SL, et al. The association between sleep duration and weight in treatment-seeking preschoolers with obesity. Sleep Med. 2012;13(8):1102–5.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Taheri S. The link between short sleep duration and obesity: we should recommend more sleep to prevent obesity. Arch Dis Child. 2006;91:881–4.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Chaput JP, Despres JP, Bouchard C, et al. Longer sleep duration associates with lower adiposity gain in adult short sleepers. Int J Obes. 2012;36(5):752–6.CrossRefGoogle Scholar
  122. 122.
    Drake C, Roehrs T, Shambroom J, Roth T. Caffeine effects on sleep taken 0, 3, or 6 hours before going to bed. J Clin Sleep Med. 2013;9(11):1195–200.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Penolazzi B, Natale V, Leone L, Russo PM. Individual differences affecting caffeine intake. Analysis of consumption behaviours for different times of day and caffeine sources. Appetite. 2012;58:971–7.CrossRefGoogle Scholar
  124. 124.
    Zwyghuizen-Doorenbos A, Roehrs TA, Lipschutz L, Timms V, Roth T. Effects of caffeine on alertness. Psychopharmacology. 1990;100:36–9.CrossRefGoogle Scholar
  125. 125.
    Snel J, Lorist MM. Effects of caffeine on sleep and cognition. Prog Brain Res. 2011;190:105–17.CrossRefGoogle Scholar
  126. 126.
    Jiménez-Ortega V, Cano Barquilla P, Fernández-Mateos P, Cardinali DP, Esquifino AI. Cadmium as an endocrine disruptor: correlation with anterior pituitary redox and circadian clock mechanisms and prevention by melatonin. Free Radic Biol Med. 2012;53(12):2287–97.CrossRefGoogle Scholar
  127. 127.
    Prosser RA, Glass JD. Assessing ethanol’s actions in the suprachiasmatic circadian clock using in vivo and in vitro approaches. Alcohol. 2015;49(4):321–39.CrossRefGoogle Scholar
  128. 128.
    Landolt HP, Gillin JC. Sleep abnormalities during abstinence in alcohol-dependent patients: aetiology and management. CNS Drugs. 2001;15:413–25.CrossRefGoogle Scholar
  129. 129.
    Roehrs T, Petrucelli N, Roth T. Sleep restriction, ethanol effects and time of day. Human Psychopharm. 1996;11:199–204.CrossRefGoogle Scholar
  130. 130.
    Roehrs T, Roth T. Sleep, sleepiness, sleep disorders and alcohol use and abuse. Sleep Med Rev. 2001;5:287–97.CrossRefGoogle Scholar
  131. 131.
    Clark CP, Gillin JC, Golshan S, et al. Increased REM sleep density at admission predicts relapse by three months in primary alcoholics with a lifetime diagnosis of secondary depression. Biol Psych. 1998;43:601–7.CrossRefGoogle Scholar
  132. 132.
    Brower KJ, Aldrich MS, Robinson EAR, Zucker RA, Greden JF. Insomnia, self-medication, and relapse to alcoholism. Am J Psychiat. 2001;158:399–404.CrossRefGoogle Scholar
  133. 133.
    Danel T, Vantyghem M-C, Touitou Y. Responses of the steroid circadian system to alcohol in humans: importance of the time and duration of intake. Chronobiol Int. 2006;23:1025–34.CrossRefGoogle Scholar
  134. 134.
    Danel T, Touitou Y. Alcohol decreases the nocturnal peak of TSH in healthy volunteers. Psychopharmacology. 2003;170:213–4.CrossRefGoogle Scholar
  135. 135.
    Kuhlwein E, Hauger RL, Irwin MR. Abnormal nocturnal melatonin secretion and disordered sleep in abstinent alcoholics. Biol Psych. 2003;54:1437–43.CrossRefGoogle Scholar
  136. 136.
    Rojdmark S, Wikner J, Adner N, Andersson DEH, Wetterberg L. Inhibition of melatonin secretion by ethanol in man. Metab Clin Exp. 1993;42:1047–51.CrossRefGoogle Scholar
  137. 137.
    Sommansson A, Saudi WS, Nylander O, Sjöblom M. Melatonin inhibits alcohol-induced increases in duodenal mucosal permeability in rats in vivo. Am J Physiol Gastrointest Liver Physiol. 2013;305(1):G95–105.CrossRefGoogle Scholar
  138. 138.
    Sánchez-Villegas A, Galbete C, Martinez-González MA, et al. The effect of the Mediterranean diet on plasma brain-derived neurotrophic factor (BDNF) levels: the PREDIMED-NAVARRA randomized trial. Nutr Neurosci. 2011;14(5):195–201.CrossRefGoogle Scholar
  139. 139.
    Saucedo Marquez CM, Vanaudenaerde B, Troosters T, Wenderoth N. High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise. J Appl Physiol (1985). 2015;119(12):1363–73.CrossRefGoogle Scholar
  140. 140.
    Cherif A, Roelands B, Meeusen R, Chamari K. Effects of intermittent fasting, caloric restriction, and Ramadan intermittent fasting on cognitive performance at rest and during exercise in adults. Sports Med. 2016;46(1):35–47.CrossRefGoogle Scholar
  141. 141.
    Araya AV, Orellana X, Espinoza J. Evaluation of the effect of caloric restriction on serum BDNF in overweight and obese subjects: preliminary evidences. Endocrine. 2008;33(3):300–4.CrossRefGoogle Scholar
  142. 142.
    Contestabile A. Benefits of caloric restriction on brain aging and related pathological states: understanding mechanisms to devise novel therapies. Curr Med Chem. 2009;16(3):350–61.CrossRefGoogle Scholar
  143. 143.
    Spanagel R, Pendyala G, Abarca C, et al. The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nature Med. 2005;11:35–42.CrossRefGoogle Scholar
  144. 144.
    Horne JA, Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol. 1976;4(2):97–110.PubMedGoogle Scholar
  145. 145.
    Roenneberg T, Wirz-Justice A, Merrow M. Life between clocks: daily temporal patterns of human chronotypes. J Biol Rhythm. 2003;18(1):80–90.CrossRefGoogle Scholar
  146. 146.
    Lewczuk B, Redlarski G, Żak A, Ziółkowska N, Przybylska-Gornowicz B, Krawczuk M. Influence of electric, magnetic, and electromagnetic fields on the circadian system: current stage of knowledge. Biomed Res Int. 2014;2014:169459. Scholar
  147. 147.
    Redlarski G, et al. The influence of electromagnetic pollution on living organisms: historical trends and forecasting changes. Biomed Res Int. 2015;2015:234098. PMC. Web. 3 Oct. 2018.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Garbarino S, Lanteri P, Durando P, Magnavita N, Sannita WG. Co-morbidity, mortality, quality of life and the healthcare/welfare/social costs of disordered sleep: a rapid review. Int J Environ Res Public Health. 2016;13(8). pii: E831.Google Scholar
  149. 149.
    Barone DA, Chokroverty S. Neurologic diseases and sleep. Sleep Med Clin. 2017;12(1):73–85.CrossRefGoogle Scholar
  150. 150.
    Armstrong TS, Shade MY, Breton G. Sleep-wake disturbance in patients with brain tumors. Neuro Oncol. 2016. pii: now119.Google Scholar
  151. 151.
    Whitehead LC, Unahi K, Burrell B, Crowe MT. The experience of fatigue across long-term conditions: a qualitative meta-synthesis. J Pain Symptom Manage. 2016;52(1):131–43.e1.CrossRefGoogle Scholar
  152. 152.
    McHill AW, Wright KP. Role of sleep and circadian disruption on energy expenditure and in metabolic predisposition to human obesity and metabolic disease. Obes Rev. 2017;18(Suppl 1):15–24.CrossRefGoogle Scholar
  153. 153.
    Forrestel AC, Miedlich SU, Yurcheshen M, Wittlin SD, Sellix MT. Chronomedicine and type 2 diabetes: shining some light on melatonin. Diabetologia. 2017;60(5):808–22.CrossRefGoogle Scholar
  154. 154.
    Touitou Y, Reinberg A, Touitou D. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: health impacts and mechanisms of circadian disruption. Life Sci. 2017;173:94–106.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Clinical AffairsIntegrative TherapeuticsGreen BayUSA
  2. 2.Department of NutritionAtlantic Medicine and WellnessWallUSA

Personalised recommendations