Akhtar, I., Nayfeh, A.H., Ribbens, C.J.: On the stability and extension of reduced-order Galerkin models in incompressible flows. Theor. Comput. Fluid Dyn. 23(3), 213–237 (2009). https://doi.org/10.1007/s00162-009-0112-y
CrossRef
Google Scholar
Ali, S., Ballarin, F., Rozza, G.: Stabilized reduced basis methods for parametrized steady Stokes and Navier-Stokes equations (2018, submitted). https://arxiv.org/abs/2001.00820
Ali, S., Ballarin, F., Rozza, G.: Unsteady stabilized reduced basis methods for parametrized Stokes and Navier-Stokes equations (2019, submitted)
Google Scholar
Baiges, J., Codina, R., Idelsohn, S.R.: Reduced-order modelling strategies for the finite element approximation of the incompressible Navier-Stokes equations. In: Computational Methods in Applied Sciences, pp. 189–216. Springer International Publishing, New York (2014). https://doi.org/10.1007/978-3-319-06136-8_9
Google Scholar
Ballarin, F., Manzoni, A., Quarteroni, A., Rozza, G.: Supremizer stabilization of POD-Galerkin approximation of parametrized steady incompressible Navier-Stokes equations. Int. J. Numer. Methods Eng. 102(5), 1136–1161 (2014). https://doi.org/10.1002/nme.4772
MathSciNet
CrossRef
Google Scholar
Ballarin, F., Sartori, A., Rozza, G.: RBniCS – reduced order modelling inFEniCS. http://mathlab.sissa.it/rbnics (2016)
Benner, P., Ohlberger, M., Patera, A., Rozza, G., Urban, K. (eds.): Model Reduction of Parametrized Systems, vol. 17. Springer International Publishing, New York (2017). https://doi.org/10.1007/978-3-319-58786-8
Google Scholar
Bergmann, M., Bruneau, C.H., Iollo, A.: Enablers for robust POD models. J. Comput. Phys. 228(2), 516–538 (2009). https://doi.org/10.1016/j.jcp.2008.09.024
MathSciNet
CrossRef
Google Scholar
Braack, M., Burman, E., John, V., Lube, G.: Stabilized finite element methods for the generalized oseen problem. Comput. Methods Appl. Mech. Eng. 196(4), 853–866 (2007). https://doi.org/10.1016/j.cma.2006.07.011
MathSciNet
CrossRef
Google Scholar
Brooks, A.N., Hughes, T.J.: Streamline Upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32(1–3), 199–259 (1982). https://doi.org/10.1016/0045-7825(82)90071-8
MathSciNet
CrossRef
Google Scholar
Chacón Rebollo, T., Delgado Ávila, E., Mármol Gómez, M., Ballarin, F., Rozza, G.: On a certified Smagorinsky reduced basis turbulence model. SIAM J. Numer. Anal. 55(6), 3047–3067 (2017). https://doi.org/10.1137/17M1118233
MathSciNet
CrossRef
Google Scholar
Chinesta, F., Huerta, A., Rozza, G., Willcox, K.: Model reduction methods. Encyclopedia of Computational Mechanics, 2nd edn., pp. 1–36 (2017)
Google Scholar
David, A., Charbel, F.: Stabilization of projection-based reduced-order models. Int. J. Numer. Methods Eng. 91(4), 358–377 (2012). https://doi.org/10.1007/s11071-012-0561-5
MathSciNet
CrossRef
Google Scholar
Douglas, J.J., Wang, J.: An absolutely stabilized finite element formulation for the Stokes problem. Math. Comput. 52(186), 495–508 (1989). https://doi.org/10.1090/S0025-5718-1989-0958871-X
CrossRef
Google Scholar
Dumon, A., Allery, C., Ammar, A.: Proper general decomposition (PGD) for the resolution of Navier–Stokes equations. J. Comput. Phys. 230(4), 1387–1407 (2011). https://doi.org/10.1016/j.jcp.2010.11.010
MathSciNet
CrossRef
Google Scholar
Giere, S., Iliescu, T., John, V., Wells, D.: SUPG reduced order models for convection-dominated convection-diffusion-reaction equations. Comput. Methods Appl. Mech. Eng. 289, 454–474 (2015). https://doi.org/10.1016/j.cma.2015.01.020
MathSciNet
CrossRef
Google Scholar
Hecht, F.: New development in freefem+ +. J. Numer. Math. 20(3–4), 251–266 (2013). https://doi.org/10.1515/jnum-2012-0013
MathSciNet
MATH
Google Scholar
Hesthaven, J.S., Rozza, G., Stamm, B.: Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer International Publishing, New York (2016). https://doi.org/10.1007/978-3-319-22470-1
CrossRef
Google Scholar
Hijazi, S., Stabile, G., Rozza, G.: Data-driven POD-Galerkin reduced order model for turbulent flows (2018, submitted). https://arxiv.org/abs/1907.09909
Hughes, T.J., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Eng. 73(2), 173–189 (1989). https://doi.org/10.1016/0045-7825(89)90111-4
CrossRef
Google Scholar
Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40(2), 492–515 (2002). https://doi.org/10.1137/s0036142900382612
MathSciNet
CrossRef
Google Scholar
Lazzaro, D., Montefusco, L.B.: Radial basis functions for the multivariate interpolation of large scattered data sets. J. Comput. Appl. Math. 140(1–2), 521–536 (2002). https://doi.org/10.1016/s0377-0427(01)00485-x
MathSciNet
CrossRef
Google Scholar
Lorenzi, S., Cammi, A., Luzzi, L., Rozza, G.: POD-Galerkin method for finite volume approximation of Navier-Stokes and RANS equations. Comput. Methods Appl. Mech. Eng. 311, 151–179 (2016). http://dx.doi.org/10.1016/j.cma.2016.08.006
MathSciNet
CrossRef
Google Scholar
Lube, G., Rapin, G.: Residual-based stabilized higher-order FEM for a generalized oseen problem. Math. Models Methods Appl. Sci. 16(07), 949–966 (2006)
MathSciNet
CrossRef
Google Scholar
Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994). https://doi.org/10.2514/3.12149
CrossRef
Google Scholar
Moukalled, F., Mangani, L., Darwish, M.: The Finite Volume Method in Computational Fluid Dynamics. Springer International Publishing, New York (2016). https://doi.org/10.1007/978-3-319-16874-6
CrossRef
Google Scholar
Noack, B.R., Eckelmann, H.: A low-dimensional Galerkin method for the three-dimensional flow around a circular cylinder. Phys. Fluids 6(1), 124–143 (1994). https://doi.org/10.1063/1.868433
CrossRef
Google Scholar
Pacciarini, P., Rozza, G.: Stabilized reduced basis method for parametrized advection-diffusion PDEs. Comput. Methods Appl. Mech. Eng. 274, 1–18 (2014). https://doi.org/10.1016/j.cma.2014.02.005
MathSciNet
CrossRef
Google Scholar
Quarteroni, A.: Numerical Models for Differential Problems, vol. 2. Springer, Berlin (2009)
CrossRef
Google Scholar
Quarteroni, A., Rozza, G.: Numerical solution of parametrized Navier–Stokes equations by reduced basis methods. Numer. Methods Partial Differential Equations 23(4), 923–948 (2007). https://doi.org/10.1002/num.20249
MathSciNet
CrossRef
Google Scholar
Rovas, D.: Reduced-basis output bound methods for parametrized partial differential equations. Ph.D. Thesis, Massachusetts Institute of Technology (2003)
Google Scholar
Rozza, G., Veroy, K.: On the stability of the reduced basis method for Stokes equations in parametrized domains. Comput. Methods Appl. Mech. Eng. 196(7), 1244–1260 (2007). https://doi.org/10.1016/j.cma.2006.09.005
MathSciNet
CrossRef
Google Scholar
Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010). https://doi.org/10.1017/s0022112010001217
MathSciNet
CrossRef
Google Scholar
Stabile, G., Rozza, G.: ITHACA-FV – In real Time Highly Advanced Computational Applications for Finite Volumes. http://www.mathlab.sissa.it/ithaca-fv. Accessed 30 Jan 2018
Stabile, G., Rozza, G.: Finite volume POD-galerkin stabilised reduced order methods for the parametrised incompressible Navier–Stokes equations. Comput. Fluids 173, 273–284 (2018). https://doi.org/10.1016/j.compfluid.2018.01.035
MathSciNet
CrossRef
Google Scholar
Stabile, G., Hijazi, S., Mola, A., Lorenzi, S., Rozza, G.: POD-Galerkin reduced order methods for CFD using Finite Volume Discretisation: vortex shedding around a circular cylinder. Commun. Appl. Ind. Math. 8(1) (2017). https://doi.org/10.1515/caim-2017-0011
MathSciNet
CrossRef
Google Scholar
Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education, London (2007)
Google Scholar
Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12(6), 620 (1998). https://doi.org/10.1063/1.168744
CrossRef
Google Scholar