Skip to main content

The Effort of Increasing Reynolds Number in Projection-Based Reduced Order Methods: From Laminar to Turbulent Flows

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE,volume 132)

Abstract

We present in this double contribution two different reduced order strategies for incompressible parameterized Navier-Stokes equations characterized by varying Reynolds numbers. The first strategy deals with low Reynolds number (laminar flow) and is based on a stabilized finite element method during the offline stage followed by a Galerkin projection on reduced basis spaces generated by a greedy algorithm. The second methodology is based on a full order finite volume discretization. The latter methodology will be used for flows with moderate to high Reynolds number characterized by turbulent patterns. For the treatment of the mentioned turbulent flows at the reduced order level, a new POD-Galerkin approach is proposed. The new approach takes into consideration the contribution of the eddy viscosity also during the online stage and is based on the use of interpolation. The two methodologies are tested on classic benchmark test cases.

Keywords

  • Stabilised RB methods
  • SUPG
  • Turbulence modelling
  • Projection based model reduction
  • Data driven model reduction
  • Viscous flows

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-30705-9_22
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-30705-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Akhtar, I., Nayfeh, A.H., Ribbens, C.J.: On the stability and extension of reduced-order Galerkin models in incompressible flows. Theor. Comput. Fluid Dyn. 23(3), 213–237 (2009). https://doi.org/10.1007/s00162-009-0112-y

    CrossRef  Google Scholar 

  2. Ali, S., Ballarin, F., Rozza, G.: Stabilized reduced basis methods for parametrized steady Stokes and Navier-Stokes equations (2018, submitted). https://arxiv.org/abs/2001.00820

  3. Ali, S., Ballarin, F., Rozza, G.: Unsteady stabilized reduced basis methods for parametrized Stokes and Navier-Stokes equations (2019, submitted)

    Google Scholar 

  4. Baiges, J., Codina, R., Idelsohn, S.R.: Reduced-order modelling strategies for the finite element approximation of the incompressible Navier-Stokes equations. In: Computational Methods in Applied Sciences, pp. 189–216. Springer International Publishing, New York (2014). https://doi.org/10.1007/978-3-319-06136-8_9

    Google Scholar 

  5. Ballarin, F., Manzoni, A., Quarteroni, A., Rozza, G.: Supremizer stabilization of POD-Galerkin approximation of parametrized steady incompressible Navier-Stokes equations. Int. J. Numer. Methods Eng. 102(5), 1136–1161 (2014). https://doi.org/10.1002/nme.4772

    MathSciNet  CrossRef  Google Scholar 

  6. Ballarin, F., Sartori, A., Rozza, G.: RBniCS – reduced order modelling inFEniCS. http://mathlab.sissa.it/rbnics (2016)

  7. Benner, P., Ohlberger, M., Patera, A., Rozza, G., Urban, K. (eds.): Model Reduction of Parametrized Systems, vol. 17. Springer International Publishing, New York (2017). https://doi.org/10.1007/978-3-319-58786-8

    Google Scholar 

  8. Bergmann, M., Bruneau, C.H., Iollo, A.: Enablers for robust POD models. J. Comput. Phys. 228(2), 516–538 (2009). https://doi.org/10.1016/j.jcp.2008.09.024

    MathSciNet  CrossRef  Google Scholar 

  9. Braack, M., Burman, E., John, V., Lube, G.: Stabilized finite element methods for the generalized oseen problem. Comput. Methods Appl. Mech. Eng. 196(4), 853–866 (2007). https://doi.org/10.1016/j.cma.2006.07.011

    MathSciNet  CrossRef  Google Scholar 

  10. Brooks, A.N., Hughes, T.J.: Streamline Upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32(1–3), 199–259 (1982). https://doi.org/10.1016/0045-7825(82)90071-8

    MathSciNet  CrossRef  Google Scholar 

  11. Chacón Rebollo, T., Delgado Ávila, E., Mármol Gómez, M., Ballarin, F., Rozza, G.: On a certified Smagorinsky reduced basis turbulence model. SIAM J. Numer. Anal. 55(6), 3047–3067 (2017). https://doi.org/10.1137/17M1118233

    MathSciNet  CrossRef  Google Scholar 

  12. Chinesta, F., Huerta, A., Rozza, G., Willcox, K.: Model reduction methods. Encyclopedia of Computational Mechanics, 2nd edn., pp. 1–36 (2017)

    Google Scholar 

  13. David, A., Charbel, F.: Stabilization of projection-based reduced-order models. Int. J. Numer. Methods Eng. 91(4), 358–377 (2012). https://doi.org/10.1007/s11071-012-0561-5

    MathSciNet  CrossRef  Google Scholar 

  14. Douglas, J.J., Wang, J.: An absolutely stabilized finite element formulation for the Stokes problem. Math. Comput. 52(186), 495–508 (1989). https://doi.org/10.1090/S0025-5718-1989-0958871-X

    CrossRef  Google Scholar 

  15. Dumon, A., Allery, C., Ammar, A.: Proper general decomposition (PGD) for the resolution of Navier–Stokes equations. J. Comput. Phys. 230(4), 1387–1407 (2011). https://doi.org/10.1016/j.jcp.2010.11.010

    MathSciNet  CrossRef  Google Scholar 

  16. Giere, S., Iliescu, T., John, V., Wells, D.: SUPG reduced order models for convection-dominated convection-diffusion-reaction equations. Comput. Methods Appl. Mech. Eng. 289, 454–474 (2015). https://doi.org/10.1016/j.cma.2015.01.020

    MathSciNet  CrossRef  Google Scholar 

  17. Hecht, F.: New development in freefem+ +. J. Numer. Math. 20(3–4), 251–266 (2013). https://doi.org/10.1515/jnum-2012-0013

    MathSciNet  MATH  Google Scholar 

  18. Hesthaven, J.S., Rozza, G., Stamm, B.: Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer International Publishing, New York (2016). https://doi.org/10.1007/978-3-319-22470-1

    CrossRef  Google Scholar 

  19. Hijazi, S., Stabile, G., Rozza, G.: Data-driven POD-Galerkin reduced order model for turbulent flows (2018, submitted). https://arxiv.org/abs/1907.09909

  20. Hughes, T.J., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Eng. 73(2), 173–189 (1989). https://doi.org/10.1016/0045-7825(89)90111-4

    CrossRef  Google Scholar 

  21. Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40(2), 492–515 (2002). https://doi.org/10.1137/s0036142900382612

    MathSciNet  CrossRef  Google Scholar 

  22. Lazzaro, D., Montefusco, L.B.: Radial basis functions for the multivariate interpolation of large scattered data sets. J. Comput. Appl. Math. 140(1–2), 521–536 (2002). https://doi.org/10.1016/s0377-0427(01)00485-x

    MathSciNet  CrossRef  Google Scholar 

  23. Lorenzi, S., Cammi, A., Luzzi, L., Rozza, G.: POD-Galerkin method for finite volume approximation of Navier-Stokes and RANS equations. Comput. Methods Appl. Mech. Eng. 311, 151–179 (2016). http://dx.doi.org/10.1016/j.cma.2016.08.006

    MathSciNet  CrossRef  Google Scholar 

  24. Lube, G., Rapin, G.: Residual-based stabilized higher-order FEM for a generalized oseen problem. Math. Models Methods Appl. Sci. 16(07), 949–966 (2006)

    MathSciNet  CrossRef  Google Scholar 

  25. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994). https://doi.org/10.2514/3.12149

    CrossRef  Google Scholar 

  26. Moukalled, F., Mangani, L., Darwish, M.: The Finite Volume Method in Computational Fluid Dynamics. Springer International Publishing, New York (2016). https://doi.org/10.1007/978-3-319-16874-6

    CrossRef  Google Scholar 

  27. Noack, B.R., Eckelmann, H.: A low-dimensional Galerkin method for the three-dimensional flow around a circular cylinder. Phys. Fluids 6(1), 124–143 (1994). https://doi.org/10.1063/1.868433

    CrossRef  Google Scholar 

  28. Pacciarini, P., Rozza, G.: Stabilized reduced basis method for parametrized advection-diffusion PDEs. Comput. Methods Appl. Mech. Eng. 274, 1–18 (2014). https://doi.org/10.1016/j.cma.2014.02.005

    MathSciNet  CrossRef  Google Scholar 

  29. Quarteroni, A.: Numerical Models for Differential Problems, vol. 2. Springer, Berlin (2009)

    CrossRef  Google Scholar 

  30. Quarteroni, A., Rozza, G.: Numerical solution of parametrized Navier–Stokes equations by reduced basis methods. Numer. Methods Partial Differential Equations 23(4), 923–948 (2007). https://doi.org/10.1002/num.20249

    MathSciNet  CrossRef  Google Scholar 

  31. Rovas, D.: Reduced-basis output bound methods for parametrized partial differential equations. Ph.D. Thesis, Massachusetts Institute of Technology (2003)

    Google Scholar 

  32. Rozza, G., Veroy, K.: On the stability of the reduced basis method for Stokes equations in parametrized domains. Comput. Methods Appl. Mech. Eng. 196(7), 1244–1260 (2007). https://doi.org/10.1016/j.cma.2006.09.005

    MathSciNet  CrossRef  Google Scholar 

  33. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010). https://doi.org/10.1017/s0022112010001217

    MathSciNet  CrossRef  Google Scholar 

  34. Stabile, G., Rozza, G.: ITHACA-FV – In real Time Highly Advanced Computational Applications for Finite Volumes. http://www.mathlab.sissa.it/ithaca-fv. Accessed 30 Jan 2018

  35. Stabile, G., Rozza, G.: Finite volume POD-galerkin stabilised reduced order methods for the parametrised incompressible Navier–Stokes equations. Comput. Fluids 173, 273–284 (2018). https://doi.org/10.1016/j.compfluid.2018.01.035

    MathSciNet  CrossRef  Google Scholar 

  36. Stabile, G., Hijazi, S., Mola, A., Lorenzi, S., Rozza, G.: POD-Galerkin reduced order methods for CFD using Finite Volume Discretisation: vortex shedding around a circular cylinder. Commun. Appl. Ind. Math. 8(1) (2017). https://doi.org/10.1515/caim-2017-0011

    MathSciNet  CrossRef  Google Scholar 

  37. Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education, London (2007)

    Google Scholar 

  38. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12(6), 620 (1998). https://doi.org/10.1063/1.168744

    CrossRef  Google Scholar 

Download references

Acknowledgements

We acknowledge the support provided by the European Research Council Consolidator Grant project Advanced Reduced Order Methods with Applications in Computational Fluid Dynamics—GA 681447, H2020-ERC COG 2015 AROMA-CFD, and INdAM-GNCS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saddam Hijazi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Hijazi, S., Ali, S., Stabile, G., Ballarin, F., Rozza, G. (2020). The Effort of Increasing Reynolds Number in Projection-Based Reduced Order Methods: From Laminar to Turbulent Flows. In: van Brummelen, H., Corsini, A., Perotto, S., Rozza, G. (eds) Numerical Methods for Flows. Lecture Notes in Computational Science and Engineering, vol 132. Springer, Cham. https://doi.org/10.1007/978-3-030-30705-9_22

Download citation