Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 249))

  • 458 Accesses

Abstract

In this chapter, a model-based robust control is proposed for PEMFC system, based on SOSM algorithm. The control objective is to maximize the fuel cell net power and avoid the oxygen starvation by regulating the oxygen excess ratio to its desired value during fast load variations. The oxygen excess ratio is estimated via an ESO from the measurements of the compressor flow rate, the load cu rrent and supply manifold pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arcak, M., Görgün, H., Pedersen, L.M., Varigonda, S.: A nonlinear observer design for fuel cell hydrogen estimation. IEEE Trans. Control Syst. Technol. 12(1), 101–110 (2004)

    Article  Google Scholar 

  2. Arce, A., del Real, A., Bordons, C., Ramirez, D.: Real-time implementation of a constrained MPC for efficient airflow control in a pem fuel cell. IEEE Trans. Ind. Electron. 57(6), 1892–1905 (2010)

    Article  Google Scholar 

  3. Bartolini, G., Pisano, A., Punta, E., Usai, E.: A survey of applications of second-order sliding mode control to mechanical systems. Int. J. Control 76(9–10), 875–892 (2003)

    Article  MathSciNet  Google Scholar 

  4. Berning, T., Lu, D., Djilali, N.: Three-dimensional computational analysis of transport phenomena in a PEM fuel cell. J. Power Sources 106(1), 284–294 (2002)

    Article  Google Scholar 

  5. Carrette, L., Friedrich, K., Stimming, U.: Fuel cells-fundamentals and applications. Fuel Cells 1(1), 5–39 (2001)

    Article  Google Scholar 

  6. Damour, C., Benne, M., Lebreton, C., Deseure, J., Grondin-Perez, B.: Real-time implementation of a neural model-based self-tuning PID strategy for oxygen stoichiometry control in PEM fuel cell. Int. J. Hydrog. Energy 39(24), 12819–12825 (2014)

    Article  Google Scholar 

  7. Danzer, M., Wilhelm, J., Aschemann, H., Hofer, E.: Model-based control of cathode pressure and oxygen excess ratio of a PEM fuel cell system. J. Power Sources 176(2), 515–522 (2008)

    Article  Google Scholar 

  8. Garcia-Gabin, W., Dorado, F., Bordons, C.: Real-time implementation of a sliding mode controller for air supply on a PEM fuel cell. J. Process Control 20(3), 325–336 (2010)

    Article  Google Scholar 

  9. Gruber, J., Bordons, C., Oliva, A.: Nonlinear MPC for the airflow in a PEM fuel cell using a volterra series model. Control Eng. Pract. 20(2), 205–217 (2012)

    Article  Google Scholar 

  10. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  11. Hu, X., Murgovski, N., Johannesson, L.M., Egardt, B.: Optimal dimensioning and power management of a fuel cell/battery hybrid bus via convex programming. IEEE/ASME Trans. Mechatron. 20(1), 457–468 (2015)

    Article  Google Scholar 

  12. Hung, J.Y., Gao, W., Hung, J.C.: Variable structure control: a survey. IEEE Trans. Ind. Electron. 40(1), 2–22 (1993)

    Article  Google Scholar 

  13. Jang, M., Ciobotaru, M., Agelidis, V.G.: Design and implementation of digital control in a fuel cell system. IEEE Trans. Ind. Inform. 9(2), 1158–1166 (2013)

    Article  Google Scholar 

  14. Jemeï, S., Hissel, D., Pera, M.C., Kauffmann, J.M.: A new modeling approach of embedded fuel-cell power generators based on artificial neural network. IEEE Trans. Ind. Electron. 55(1), 437–447 (2008)

    Google Scholar 

  15. Jung, J.H., Ahmed, S., Enjeti, P.: PEM fuel cell stack model development for real-time simulation applications. IEEE Trans. Ind. Electron. 58(9), 4217–4231 (2011)

    Article  Google Scholar 

  16. Kunusch, C., Puleston, P., Mayosky, M., Riera, J.: Sliding mode strategy for PEM fuel cells stacks breathing control using a super-twisting algorithm. IEEE Trans. Control Syst. Technol. 17(1), 167–174 (2009)

    Article  Google Scholar 

  17. Laghrouche, S., Liu, J., Ahmed, F.S., Harmouche, M., Wack, M.: Adaptive second-order sliding mode observer-based fault reconstruction for PEM fuel cell air-feed system. IEEE Trans. Control Syst. Technol. 23(3), 1098–1109 (2015)

    Article  Google Scholar 

  18. Levant, A.: Robust exact differentiation via sliding mode technique. Automatica 34(3), 379–384 (1998)

    Article  MathSciNet  Google Scholar 

  19. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)

    Article  MathSciNet  Google Scholar 

  20. Matraji, I., Laghrouche, S., Jemei, S., Wack, M.: Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode. Appl. Energy 104, 945–957 (2013)

    Article  Google Scholar 

  21. Meidanshahi, V., Karimi, G.: Dynamic modeling, optimization and control of power density in a PEM fuel cell. Appl. Energy 93, 98–105 (2012)

    Article  Google Scholar 

  22. Muller, E.A., Stefanopoulou, A.G., Guzzella, L.: Optimal power control of hybrid fuel cell systems for an accelerated system warm-up. IEEE Trans. Control Syst. Technol. 15(2), 290–305 (2007)

    Article  Google Scholar 

  23. Pilloni, A., Pisano, A., Usai, E.: Observer-based air excess ratio control of a PEM fuel cell system via high-order sliding mode. IEEE Trans. Ind. Electron. 62(8), 5236–5246 (2015)

    Article  Google Scholar 

  24. Pisano, A., Davila, A., Fridman, L., Usai, E.: Cascade control of PM DC drives via second-order sliding-mode technique. IEEE Trans. Ind. Electron. 55(11), 3846–3854 (2008)

    Article  Google Scholar 

  25. Pukrushpan, J., Peng, H., Stefanopoulou, A.: Control-oriented modeling and analysis of fuel cell reactant flow for automotive fuel cell systems. ASME J. Dyn. Syst. Meas. Control 126(1), 14–25 (2004)

    Article  Google Scholar 

  26. Pukrushpan, J.T., Stefanopoulou, A.G., Peng, H.: Control of Fuel Cell Power Systems: Principles, Modeling, Analysis and Feedback Design. Springer Science & Business Media (2004)

    Google Scholar 

  27. Rakhtala, S.M., Noei, A.R., Ghaderi, R., Usai, E.: Design of finite-time high-order sliding mode state observer: a practical insight to PEM fuel cell system. J. Process. Control 24(1), 203–224 (2014)

    Article  Google Scholar 

  28. Ramos-Paja, C.A., Giral, R., Martinez-Salamero, L., Romano, J., Romero, A., Spagnuolo, G.: A pem fuel-cell model featuring oxygen-excess-ratio estimation and power-electronics interaction. IEEE Trans. Ind. Electron. 57(6), 1914–1924 (2010)

    Article  Google Scholar 

  29. Shtessel, Y., Taleb, M., Plestan, F.: A novel adaptive-gain supertwisting sliding mode controller: methodology and application. Automatica 48(5), 759–769 (2012)

    Article  MathSciNet  Google Scholar 

  30. Suh, K.W., Stefanopoulou, A.G.: Performance limitations of air flow control in power-autonomous fuel cell systems. IEEE Trans. Control. Syst. Technol. 15(3), 465–473 (2007)

    Article  Google Scholar 

  31. Talole, S.E., Kolhe, J.P., Phadke, S.B.: Extended-state-observer-based control of flexible-joint system with experimental validation. IEEE Trans. Ind. Electron. 57(4), 1411–1419 (2010)

    Article  Google Scholar 

  32. Vahidi, A., Stefanopoulou, A., Peng, H.: Current management in a hybrid fuel cell power system: a model-predictive control approach. IEEE Trans. Control Syst. Technol. 14(6), 1047–1057 (2006)

    Article  Google Scholar 

  33. Vepa, R.: Adaptive state estimation of a PEM fuel cell. IEEE Trans. Energy Convers. 27(2), 457–467 (2012)

    Article  Google Scholar 

  34. Wilhelm, A.N., Surgenor, B.W., Pharoah, J.G.: Design and evaluation of a micro-fuel-cell-based power system for a mobile robot. IEEE/ASME Trans. Mechatron. 11(4), 471–476 (2006)

    Article  Google Scholar 

  35. Zhao, D., Gao, F., Bouquain, D., Dou, M., Miraoui, A.: Sliding-mode control of an ultrahigh-speed centrifugal compressor for the air management of fuel-cell systems for automotive applications. IEEE Trans. Veh. Technol. 63(1), 51–61 (2014)

    Article  Google Scholar 

  36. Zheng, Q., Chen, Z., Gao, Z.: A practical approach to disturbance decoupling control. Control. Eng. Pract. 17(9), 1016–1025 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxing Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J., Gao, Y., Yin, Y., Wang, J., Luo, W., Sun, G. (2020). Sliding Mode Control of PEMFC Systems. In: Sliding Mode Control Methodology in the Applications of Industrial Power Systems. Studies in Systems, Decision and Control, vol 249. Springer, Cham. https://doi.org/10.1007/978-3-030-30655-7_5

Download citation

Publish with us

Policies and ethics