Skip to main content

Performance Evaluation of Average Methods in the Time Domain Using Quality Measures for Automatic Detection of Evoked Potentials

  • Conference paper
  • First Online:
VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering (CLAIB 2019)

Abstract

For the reduction of noise and extraction of the evoked potentials several methods have been reported in the literature based on the average of signals, which try to counteract the limitations of the classical technique used for the signal enhancement, which is the coherent average. The quality of the resulting signal can be evaluated using measurements in the time domain or the frequency domain. The objective of this work is to evaluate the performance of different average methods using quality measures in the time domain to determine which combination of an average method with quality measurement is better adjusted to the detection of transient auditory evoked potentials. To fulfill this objective, the classic coherent average, the median, the weighted average and four other versions of the robust average based on the median are tested. The quality measures used to compare the different average methods are the correlation coefficient, the standard deviation ratio and the variance of the single point. It was obtained as a result that the robust method Tanh mean, together with the measure of the variance of single point offers the best results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sörnmo, L., Laguna, P.: Bioelectrical Signal Processing in Cardiac and Neurological Applications. Elsevier (2005)

    Google Scholar 

  2. Weerathunge, W.A.H.R., Bandara, D.M.S.L., Amaratunga, M.G.B., De Silva, A.C.: Robust algorithm for objective hearing screening of newborns using Automated Auditory Brain-stem Response. In: 2016 Moratuwa Engineering Research Conference (MERCon), pp. 149–155 (2016). https://doi.org/10.1109/MERCon.2016.7480131

  3. Rajkumar, C., Augustine, A., Lepcha, A., Balraj, A.: Automated auditory brainstem response: Its efficacy as a screening tool for neonatal hearing screening in the postnatal ward. Indian J. Otol. 22(4), 237 (2016). https://doi.org/10.4103/0971-7749.192134

    Article  Google Scholar 

  4. Andrew P.B., Wayne, J.W.: Automated analysis of the auditory brainstem response. In: Proceedings of the 2004 Intelligent Sensors, Sensor Networks and Information Processing Conference 2004, pp. 541–546 (2004). https://doi.org/10.1109/issnip.2004.1417519

  5. Pander, T.: A new approach to robust, weighted signal averaging. Biocybern. Biomed. Eng. 35(4), 317–327 (2015). https://doi.org/10.1016/j.bbe.2015.06.002

    Article  Google Scholar 

  6. Kim, K., Lim, S.-H., Lee, J., Kang, W.-S., Moon, C., Choi, J.-W.: Joint maximum likelihood time delay estimation of unknown event-related potential signals for EEG sensor signal quality enhancement. Sensors 16(6), 891 (2016). https://doi.org/10.3390/s16060891

    Article  Google Scholar 

  7. Pander, T., Przybyła, T., Czabański, R.: An application of the Lp-norm in robust weighted averaging of biomedical signals, J. Med. Informatics Technol., 22(2) (2013)

    Google Scholar 

  8. Leonowicz, Z., Karvanen, J., Shishkin, S.L.: Trimmed estimators for robust averaging of event-related potentials. J. Neurosci. Methods 142(1), 17–26 (2005). https://doi.org/10.1016/j.jneumeth.2004.07.008

    Article  Google Scholar 

  9. Leski, J.M.: Robust weighted averaging [of biomedical signals]. IEEE Trans. Biomed. Eng. 49(8), 796–804 (2002). https://doi.org/10.1109/tbme.2002.800757

    Article  Google Scholar 

  10. Pander, T., Pietraszek, S., Przybyła, T.: A Novel Approach to Robust Weighted Averaging of Auditory Evoked Potentials, pp. 321–332. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06596-0_30

    Google Scholar 

  11. Davila, C., Mobin, M.S.: Weighted averaging of evoked potentials. IEEE Trans. Biomed. Eng. 39(4), 338–345 (1992). https://doi.org/10.1109/10.126606

    Article  Google Scholar 

  12. Silva, I.: Estimation of postaverage SNR from evoked responses under nonstationary noise. IEEE Trans. Biomed. Eng. 56(8), 2123–2130 (2009). https://doi.org/10.1109/tbme.2009.2021400

    Article  Google Scholar 

  13. Elamir, E.A.H., Seheult, A.H.: Trimmed L-moments. Comput. Stat. Data Anal. 43(3), 299–314 (2003). https://doi.org/10.1016/s0167-9473(02)00250-5

    Article  MathSciNet  MATH  Google Scholar 

  14. Mijares, E., Pérez Abalo, M.C., Herrera, D., Lage, A., Vega, M.: Comparing statistics for objective detection of transient and steady-state evoked responses in newborns. Int. J. Audiol. 52(1), 44–49 (2013). https://doi.org/10.3109/14992027.2012.736030

    Article  Google Scholar 

  15. Savio López, G., Mijares Nodarse, E., Pérez Abalo, M.C., Vega Hernandez, M., Lage Castellanos, A., Hernández Barros, D.: Eficiencia de la detección automática de potenciales evocados auditivos de estado estable a múltiples frecuencias evaluada mediante la metodología ROC. Rev. Logop. Foniatría y Audiol. 27(1), 12–23 (2007). https://doi.org/10.1016/s0214-4603(07)70067-0

    Article  Google Scholar 

  16. Valderrama, J.T., et al.: Automatic quality assessment and peak identification of auditory brainstem responses with fitted parametric peaks. Comput. Methods Programs Biomed. 14(3), 262–275 (2014). https://doi.org/10.1016/j.cmpb.2014.02.015

    Article  Google Scholar 

  17. Chesnaye, M.A., Bell, S.L., Harte, J.M., Simpson, D.M.: Objective measures for detecting the auditory brainstem response: comparisons of specificity, sensitivity and detection time. Int. J. Audiol. 57(6), 468–478 (2018). https://doi.org/10.1080/14992027.2018.1447697

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idileisy Torres-Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Torres-Rodríguez, I., Ferrer-Riesgo, C.A., de Morales Artiles, M.M.P., Taboada-Crispi, A. (2020). Performance Evaluation of Average Methods in the Time Domain Using Quality Measures for Automatic Detection of Evoked Potentials. In: González Díaz, C., et al. VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering. CLAIB 2019. IFMBE Proceedings, vol 75. Springer, Cham. https://doi.org/10.1007/978-3-030-30648-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30648-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30647-2

  • Online ISBN: 978-3-030-30648-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics