Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1), 151–175 (2010)
MathSciNet
CrossRef
Google Scholar
Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised pixel-level domain adaptation with generative adversarial networks. In: CVPR (2017)
Google Scholar
Carlucci, F.M., D’Innocente, A., Bucci, S., Caputo, B., Tommasi, T.: Domain generalization by solving jigsaw puzzles. In: CVPR (2019)
Google Scholar
Carlucci, F.M., Porzi, L., Caputo, B., Ricci, E., Rota Bulò, S.: Autodial: automatic domain alignment layers. In: ICCV (2017)
Google Scholar
Carlucci, F.M., Porzi, L., Caputo, B., Ricci, E., Bulò, S.R.: Just DIAL: domain alignment layers for unsupervised domain adaptation. In: Battiato, S., Gallo, G., Schettini, R., Stanco, F. (eds.) ICIAP 2017. LNCS, vol. 10484, pp. 357–369. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68560-1_32
CrossRef
Google Scholar
D’Innocente, A., Caputo, B.: Domain generalization with domain-specific aggregation modules. In: Brox, T., Bruhn, A., Fritz, M. (eds.) GCPR 2018. LNCS, vol. 11269, pp. 187–198. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12939-2_14
CrossRef
Google Scholar
Donahue, J., et al.: Decaf: a deep convolutional activation feature for generic visual recognition. In: ICML (2014)
Google Scholar
Duan, L., Tsang, I.W., Xu, D., Chua, T.S.: Domain adaptation from multiple sources via auxiliary classifiers. In: ICML (2009)
Google Scholar
French, G., Mackiewicz, M., Fisher, M.: Self-ensembling for visual domain adaptation. In: ICLR (2018)
Google Scholar
Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: ICML (2015)
Google Scholar
Gong, B., Grauman, K., Sha, F.: Reshaping visual datasets for domain adaptation. In: NIPS (2013)
Google Scholar
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Google Scholar
Hoffman, J., Kulis, B., Darrell, T., Saenko, K.: Discovering latent domains for multisource domain adaptation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, pp. 702–715. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_50
CrossRef
Google Scholar
Huang, J., Gretton, A., Borgwardt, K.M., Schölkopf, B., Smola, A.J.: Correcting sample selection bias by unlabeled data. In: NIPS (2006)
Google Scholar
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: ACM-Multimedia, pp. 675–678. ACM (2014)
Google Scholar
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)
Google Scholar
Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: ICCV (2017)
Google Scholar
Li, W., Xu, Z., Xu, D., Dai, D., Van Gool, L.: Domain generalization and adaptation using low rank exemplar SVMs. IEEE T-PAMI 40(5), 1114–1127 (2018)
CrossRef
Google Scholar
Li, Y., Wang, N., Shi, J., Liu, J., Hou, X.: Revisiting batch normalization for practical domain adaptation. arXiv preprint arXiv:1603.04779 (2016)
Long, M., Wang, J.: Learning transferable features with deep adaptation networks. In: ICML (2015)
Google Scholar
Long, M., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: NIPS (2016)
Google Scholar
Mancini, M., Bulò, S.R., Caputo, B., Ricci, E.: Best sources forward: domain generalization through source-specific nets. In: ICIP (2018)
Google Scholar
Mancini, M., Bulò, S.R., Caputo, B., Ricci, E.: Robust place categorization with deep domain generalization. IEEE RAL 3(3), 2093–2100 (2018)
Google Scholar
Mancini, M., Bulò, S.R., Caputo, B., Ricci, E.: Adagraph: Unifying predictive and continuous domain adaptation through graphs. In: CVPR (2019)
Google Scholar
Mancini, M., Karaoguz, H., Ricci, E., Jensfelt, P., Caputo, B.: Kitting in the wild through online domain adaptation. In: IROS (2018)
Google Scholar
Mancini, M., Porzi, L., Bulò, S.R., Caputo, B., Ricci, E.: Boosting domain adaptation by discovering latent domains. In: CVPR (2018)
Google Scholar
Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain adaptation: Learning bounds and algorithms. arXiv preprint arXiv:0902.3430 (2009)
Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)
CrossRef
Google Scholar
Roy, S., Siarohin, A., Sangineto, E., Bulo, S.R., Sebe, N., Ricci, E.: Unsupervised domain adaptation using feature-whitening and consensus loss. In: CVPR (2019)
Google Scholar
Russo, P., Carlucci, F.M., Tommasi, T., Caputo, B.: From source to target and back: symmetric bi-directional adaptive GAN. In: CVPR (2018)
Google Scholar
Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16
CrossRef
Google Scholar
Saito, K., Ushiku, Y., Harada, T.: Asymmetric tri-training for unsupervised domain adaptation. arXiv preprint arXiv:1702.08400 (2017)
Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
MathSciNet
MATH
Google Scholar
Sun, Q., Chattopadhyay, R., Panchanathan, S., Ye, J.: A two-stage weighting framework for multi-source domain adaptation. In: NIPS (2011)
Google Scholar
Xiong, C., McCloskey, S., Hsieh, S.H., Corso, J.J.: Latent domains modeling for visual domain adaptation. In: AAAI (2014)
Google Scholar
Xu, R., Chen, Z., Zuo, W., Yan, J., Lin, L.: Deep cocktail network: multi-source unsupervised domain adaptation with category shift. In: CVPR (2018)
Google Scholar
Xu, Z., Li, W., Niu, L., Xu, D.: Exploiting low-rank structure from latent domains for domain generalization. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 628–643. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_41
CrossRef
Google Scholar
Zeng, X., Ouyang, W., Wang, M., Wang, X.: Deep learning of scene-specific classifier for pedestrian detection. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 472–487. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_31
CrossRef
Google Scholar