Skip to main content

Decomposition of Fine Particulate Organic Matter

  • Chapter
  • First Online:
Methods to Study Litter Decomposition
  • 1668 Accesses

Abstract

Fine particulate organic matter (FPOM) ranges in size from 0.45 μm to 1 mm. It serves as an important food source for aquatic fauna, as a substrate for heterotrophic microorganisms, and as a carrier of nutrients, metals and other chemicals. In streams, FPOM is derived from leaf litter, algae and other organisms by physical, chemical, and biological processes. In addition, FPOM can be formed by the flocculation of dissolved organic matter (DOM). This chapter describes an approach to determine decomposition rates of FPOM in streams. An FPOM sample is collected in the field or generated in the laboratory by collecting the faeces of litter-consuming invertebrates. Known amounts of the collected FPOM are inserted in experimental tubes and deployed on the stream bed. Tubes are periodically retrieved and the FPOM mass loss is determined by drying and weighing. If contamination by mineral particles is suspected, FPOM samples can be ashed to determine the organic matter fraction. Decomposition rates of FPOM found to date range from 1.3 to 12.6 × 10−3 day−1, depending on particle size, chemical quality and associated microbial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bonin, H. L., Griffiths, R. P., & Caldwell, B. A. (2000). Nutrient and microbiological characteristics of fine benthic organic matter in mountain streams. Journal of the North American Benthological Society, 19, 235–249.

    Article  Google Scholar 

  • Bundschuh, M., & McKie, B. G. (2016). An ecological and ecotoxicological perspective on fine particulate organic matter in streams. Freshwater Biology, 61, 2063–2074.

    Google Scholar 

  • Dangles, O., Gessner, M. O., Guérold, F., & Chauvet, E. (2004). Impacts of stream acidification on litter breakdown: Implications for assessing ecosystem functioning. Journal of Applied Ecology, 41, 365–378.

    Article  CAS  Google Scholar 

  • Jackson, C. R., & Vallaire, S. C. (2007). Microbial activity and decomposition of fine particulate organic matter in a Louisiana cypress swamp. Journal of the North American Benthological Society, 26, 742–752.

    Article  Google Scholar 

  • Joyce, P., & Wotton, R. S. (2008). Shredder fecal pellets as stores of allochthonous organic matter in streams. Journal of the North American Benthological Society, 27, 521–528.

    Article  Google Scholar 

  • Joyce, P., Warren, J. L., & Wotton, R. S. (2007). Faecal pellets in streams: Their binding, breakdown and utilization. Freshwater Biology, 52, 1868–1880.

    Article  Google Scholar 

  • Kelly, D. W., Dick, J. T. A., & Montgomery, W. I. (2002). The functional role of Gammarus (Crustacea, Amphipoda): Shredders, predators, or both? Hydrobiologia, 485, 199–203.

    Article  Google Scholar 

  • Kominoski, J. S., Hoellein, T. J., Leroy, C. J., Pringle, C. M., & Swan, C. M. (2010). Beyond species richness: Expanding biodiversity–ecosystem functioning theory in detritus-based streams. River Research and Applications, 26, 67–75.

    Google Scholar 

  • Mattingly, R. L. (1986). Mass loss and qualitative change in stream-incubated fine particulate organic matter derived from leaves differing in rate of processing. Hydrobiologia, 135, 207–214.

    Article  Google Scholar 

  • Meybeck, M. (1981). River transport of organic carbon to the ocean. In Committee on flux of organic carbon the ocean (Ed.), Carbon dioxide effects research and assessment program: Flux of organic carbon by rivers to the oceans (pp. 219–269). Washington, DC: US Department of Energy.

    Google Scholar 

  • Newbold, J. D., Thomas, S. A., Minshall, G. W., Cushing, C. E., & Georgian, T. (2005). Deposition, benthic residence, and resuspension of fine organic particles in a mountain stream. Limnology and Oceanography, 50, 1571–1580.

    Article  CAS  Google Scholar 

  • Peters, G. T., Benfield, E. F., & Webster, J. R. (1989). Chemical composition and microbial activity of seston in a southern Appalachian headwater stream. Journal of the North American Benthological Society, 8, 74–84.

    Article  Google Scholar 

  • Rowland, R., Inamdar, S., & Parr, T. (2017). Evolution of particulate organic matter (POM) along a headwater drainage: Role of sources, particle size class, and storm magnitude. Biogeochemistry, 133, 181–200.

    Article  CAS  Google Scholar 

  • Sakamaki, T., & Richardson, J. S. (2011). Biogeochemical properties of fine particulate organic matter as an indicator of local and catchment impacts on forested streams. Journal of Applied Ecology, 48, 1462–1471.

    Article  CAS  Google Scholar 

  • Sinsabaugh, R. L., & Findlay, S. (1995). Microbial production, enzyme activity, and carbon turnover in surface sediments of the Hudson River estuary. Microbial Ecology, 30, 127–141.

    Article  CAS  Google Scholar 

  • Sinsabaugh, R. L., Weiland, T., & Linkins, A. E. (1992). Enzymatic and molecular analysis of microbial communities associated with lotic particulate organic matter. Freshwater Biology, 28, 393–404.

    Article  CAS  Google Scholar 

  • Sinsabaugh, R. L., Osgood, M. P., & Findlay, S. (1994). Enzymatic models for estimating decomposition rates of particulate detritus. Journal of the North American Benthological Society, 13, 160–169.

    Article  Google Scholar 

  • Tank, J. L., Rosi-Marshall, E. J., Griffiths, N. A., Entrekin, S. A., & Stephen, M. L. (2010). A review of allochthonous organic matter dynamics and metabolism in streams. Journal of the North American Benthological Society, 29, 118–146.

    Article  Google Scholar 

  • Tant, C. J., Rosemond, A. D., Mehring, A. S., Kuehn, K. A., & Davis, J. M. (2015). The role of aquatic fungi in transformations of organic matter mediated by nutrients. Freshwater Biology, 60, 1354–1363.

    Article  CAS  Google Scholar 

  • Vignati, D., & Dominik, J. (2003). The role of coarse colloids as a carrier phase for trace metals in riverine systems. Aquatic Science, 65, 129–142.

    Article  CAS  Google Scholar 

  • Webster, J. R., & Meyer, J. L. (1997). Steam organic matter budgets. Journal of the North American Benthological Society, 16, 3–4.

    Article  Google Scholar 

  • Wotton, R. S. (1994). The biology of particles in aquatic systems (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Wotton, R. S., & Malmqvist, B. (2001). Feces in aquatic ecosystems. BioScience, 51, 537–544.

    Google Scholar 

  • Wurzbacher, C., Wannicke, N., Grimmett, I. J., & Bärlocher, F. (2016). Effects of FPOM size and quality on aquatic heterotrophic bacteria. Limnologica, 59, 109–115.

    Article  CAS  Google Scholar 

  • Yoshimura, C., Gessner, M. O., Tockner, K., & Furumai, H. (2008). Chemical properties, microbial respiration, and decomposition of coarse and fine particulate organic matter. Journal of the North American Benthological Society, 27, 664–673.

    Article  Google Scholar 

  • Yoshimura, C., Fujii, M., Omura, T., & Tockner, K. (2010). Instream release of dissolved organic matter from coarse and fine particulate organic matter of different origins. Biogeochemistry, 100, 151–165.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chihiro Yoshimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yoshimura, C. (2020). Decomposition of Fine Particulate Organic Matter. In: Bärlocher, F., Gessner, M., Graça, M. (eds) Methods to Study Litter Decomposition. Springer, Cham. https://doi.org/10.1007/978-3-030-30515-4_9

Download citation

Publish with us

Policies and ethics