Skip to main content

Phenol Oxidation

  • Chapter
  • First Online:
Methods to Study Litter Decomposition

Abstract

Lignins are major structural components of plant cell walls and hence of plant litter. The complex polymer effectively resists chemical and enzymatic attack, even more than other important phenolic litter constituents such as condensed tannins. The enzymatic degradation of both lignin and condensed tannins depends on the oxidation of aromatic rings. Since some of the enzymes catalyzing these reactions exhibit a degree of substrate specificity, the oxidation of different phenolic compounds involves different classes of phenol oxidases. This chapter describes a method for quantifying the activity of phenol-oxidizing enzymes based on the determination of increases in oxidation products. The approach potentially covers the combined activities of several enzymes with different substrate affinities. Specifically, a buffered extract from plant litter, animal gut content, or another type of environmental sample is added to a solution of a suitable phenolic substrate. Its oxidation is followed over time as an increase in brown coloration determined spectrophotometrically at 520 nm, while suppressing polymerization of the quinonic oxidation products. Since those oxidation products are not precisely defined, the described method yields information only on the relative phenol oxidation capacity. Therefore, meaningful comparisons are restricted to data obtained from identical substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Boerjan, W., Ralph, J., & Baucher, M. (2003). Lignin biosynthesis. Annual Review of Plant Biology, 54, 519–546.

    Article  CAS  Google Scholar 

  • Breznak, J. A., & Brune, A. (1994). Role of microorganisms in the digestion of lignocellulose by termites. Annual Review of Entomology, 39, 453–487.

    Article  CAS  Google Scholar 

  • Claus, H., & Filip, Z. (1990). Effects of clays and other solids on the activity of phenoloxidases produced by some fungi and actinomycetes. Soil Biology and Biochemistry, 22, 483–488.

    Article  CAS  Google Scholar 

  • Cragg, S. M., Beckham, G. T., Bruce, N. C., Bugg, T. D. H., Distel, D. L., Dupree, P., Green Etxabe, A., Goodell, B. S., Jellison, J., McGeehan, J. E., McQueen-Mason, S. J., Schnorr, K., Walton, P. H., Watts, J. E. M., & Zimmer, M. (2015). Lignocellulose degradation mechanisms across the tree of life. Current Opinion in Chemical Biology, 29, 108–119.

    Article  CAS  Google Scholar 

  • Faure, D., Bouillant, M.-L., & Bally, R. (1995). Comparative study of substrates and inhibitors of Azospirillum lipoferum and Pyricularia oryzae laccases. Applied and Environmental Microbiology, 61, 1144–1146.

    Article  CAS  Google Scholar 

  • Hagerman, A. E., & Butler, L. G. (1991). Tannins and lignins. In G. A. Rosenthal & M. R. Berenbaum (Eds.), Herbivores: Their interactions with secondary plant metabolites – I: The chemical participants (pp. 355–388). New York: Academic.

    Chapter  Google Scholar 

  • Harrison, A. F. (1971). The inhibitory effect of oak leaf litter tannins on the growth of fungi, in relation to litter decomposition. Soil Biology and Biochemistry, 3, 167–172.

    Article  CAS  Google Scholar 

  • Jaenicke, E., Fraune, S., Irmak, P., Maym, S., Augustin, R., & Zimmer, M. (2009). Is activated hemocyanin instead of phenoloxidase involved in immune response in woodlice? Developmental and Comparative Immunology, 33, 1055–1063.

    Google Scholar 

  • Kubitzki, K., & Gottlieb, O. R. (1984). Phytochemical aspects of angiosperm origin and evolution. Acta Botanica Neerlandica, 33, 457–468.

    Article  CAS  Google Scholar 

  • Laughton, A., & Siva-Jothy, M. T. (2011). A standardised protocol for measuring phenoloxidase and prophenoloxidase in the honey bee, Apis mellifera. Apidologie, 42, 140–149.

    Article  CAS  Google Scholar 

  • Ljungdahl, L. G., & Eriksson, K. E. (1985). Ecology of microbial cellulose degradation. Advances in Microbial Ecology, 8, 237–299.

    Article  CAS  Google Scholar 

  • Mayer, A. M. (1987). Polyphenol oxidases in plants – Recent progress. Phytochemistry, 26, 11–20.

    Article  Google Scholar 

  • Perucci, P., Casucci, C., & Dumontet, S. (2000). An improved method to evaluate the o-diphenol oxidase activity of soil. Soil Biology and Biochemistry, 32, 1927–1933.

    Article  CAS  Google Scholar 

  • Rabinovich, M. L., Bolobova, A. V., & Vasil’chenko, L. G. (2004). Fungal decomposition of natural aromatic structures and xenobiotics: A review. Applied Biochemistry and Microbiology, 40, 1–17.

    Article  CAS  Google Scholar 

  • Sarkanen, K. V., & Ludwig, C. H. (1971). Lignins – Occurrence, formation, structure and reactions. New York: Wiley.

    Google Scholar 

  • Savoie, J. M., & Gourbière, F. (1989). Decomposition of cellulose by the species of the fungal succession degrading Abies alba needles. FEMS Microbial Ecology, 62, 307–314.

    Article  CAS  Google Scholar 

  • Sinsabaugh, R. L. (2010). Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology and Biochemistry, 42, 391–404.

    Article  CAS  Google Scholar 

  • Summers, C. B., & Felton, G. W. (1994). Prooxidant effects of phenolic acids on the generalist herbivore Helicoverpa zea (Lepidoptera: Noctuidae): Potential mode of action for phenolic compounds in plant anti-herbivore chemistry. Insect Biochemistry and Molecular Biology, 24, 943–953.

    Article  CAS  Google Scholar 

  • Swain, T. (1979). Tannins and lignins. In G. A. Rosenthal & D. H. Janzen (Eds.), Herbivores: Their interactions with secondary plant metabolites – I: The chemical participants (pp. 657–718). San Diego: Academic.

    Google Scholar 

  • Thurston, C. F. (1994). The structure and function of fungal laccases. Microbiology, 140, 19–26.

    Article  CAS  Google Scholar 

  • Wood, D. A. (1980). Production, purification and properties of extracellular laccase of Agaricus bisporus. Journal of General Microbiology, 117, 327–338.

    CAS  Google Scholar 

  • Yoruk, R., & Marshall, M. R. (2003). Physicochemical properties and function of plant phenol oxidase: A review. Journal of Food Biochemistry, 27, 361–422.

    Article  CAS  Google Scholar 

  • Zimmer, M., & Topp, W. (1998). Nutritional biology of terrestrial isopods (Isopoda: Oniscidea): Copper revisited. Israel Journal of Zoology, 44, 453–462.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Zimmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zimmer, M. (2020). Phenol Oxidation. In: Bärlocher, F., Gessner, M., Graça, M. (eds) Methods to Study Litter Decomposition. Springer, Cham. https://doi.org/10.1007/978-3-030-30515-4_47

Download citation

Publish with us

Policies and ethics