Skip to main content

On the Inability of Markov Models to Capture Criticality in Human Mobility

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11729)

Abstract

We examine the non-Markovian nature of human mobility by exposing the inability of Markov models to capture criticality in human mobility. In particular, the assumed Markovian nature of mobility was used to establish an upper bound on the predictability of human mobility, based on the temporal entropy. Since its inception, this bound has been widely used for validating the performance of mobility prediction models. We show that the variants of recurrent neural network architectures can achieve significantly higher prediction accuracy surpassing this upper bound. The central objective of our work is to show that human-mobility dynamics exhibit criticality characteristics which contributes to this discrepancy. In order to explain this anomaly, we shed light on the underlying assumption that human mobility characteristics follow an exponential decay that has resulted in this bias. By evaluating the predictability on real-world datasets, we show that human mobility exhibits scale-invariant long-distance dependencies, bearing resemblance to power-law decay, contrasting with the initial Markovian assumption. We experimentally validate that this assumption inflates the estimated mobility entropy, consequently lowering the upper bound on predictability. We demonstrate that the existing approach of entropy computation tends to overlook the presence of long-distance dependencies and structural correlations in human mobility. We justify why recurrent-neural network architectures that are designed to handle long-distance dependencies surpass the previously computed upper bound on mobility predictability.

Keywords

  • Predictability limits
  • Human-mobility
  • Criticality

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-30508-6_39
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-30508-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Barabasi, A.L.: The origin of bursts and heavy tails in human dynamics. Nature 435(7039), 207 (2005)

    CrossRef  Google Scholar 

  2. Bialek, W., Tishby, N.: Predictive information. arXiv preprint cond-mat/9902341 (1999)

    Google Scholar 

  3. Chang, S., et al.: Dilated recurrent neural networks. In: NIPS (2017)

    Google Scholar 

  4. Chomsky, N.: On certain formal properties of grammars. Inf. Control 2(2), 137–167 (1959)

    CrossRef  MathSciNet  Google Scholar 

  5. Cuttone, A., Lehmann, S., González, M.C.: Understanding predictability and exploration in human mobility. EPJ Data Sci. 7(1), 2 (2018)

    CrossRef  Google Scholar 

  6. Gambs, S., Killijian, M.O., del Prado Cortez, M.N.: Next place prediction using mobility Markov chains. In: Proceedings of the First Workshop on Measurement, Privacy, and Mobility, p. 3. ACM (2012)

    Google Scholar 

  7. Gerchinovitz, S., Ménard, P., Stoltz, G.: Fano’s inequality for random variables. arXiv preprint arXiv:1702.05985 (2017)

  8. Grassberger, P.: Entropy estimates from insufficient samplings. arXiv preprint physics/0307138 (2003)

    Google Scholar 

  9. Grossberg, S.: Recurrent neural networks. Scholarpedia 8(2), 1888 (2013)

    CrossRef  Google Scholar 

  10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–80 (1997)

    CrossRef  Google Scholar 

  11. Ikanovic, E.L., Mollgaard, A.: An alternative approach to the limits of predictability in human mobility. EPJ Data Sci. 6(1), 12 (2017)

    CrossRef  Google Scholar 

  12. Khandelwal, U., He, H., Qi, P., Jurafsky, D.: Sharp nearby, fuzzy far away: how neural language models use context. arXiv preprint arXiv:1805.04623 (2018)

  13. Krumme, C., Llorente, A., Cebrian, M., Moro, E., et al.: The predictability of consumer visitation patterns. Sci. Rep. 3, 1645 (2013)

    CrossRef  Google Scholar 

  14. Laurila, J.K., et al.: The mobile data challenge: big data for mobile computing research. In: Pervasive Computing, No. EPFL-CONF-192489 (2012)

    Google Scholar 

  15. Lesne, A., Blanc, J.L., Pezard, L.: Entropy estimation of very short symbolic sequences. Phys. Rev. E 79(4), 046208 (2009)

    CrossRef  MathSciNet  Google Scholar 

  16. Lin, H.W., Tegmark, M.: Critical behavior from deep dynamics: a hidden dimension in natural language. arXiv preprint arXiv:1606.06737 (2016)

  17. Lin, H.W., Tegmark, M.: Critical behavior in physics and probabilistic formal languages. Entropy 19(7), 299 (2017)

    CrossRef  Google Scholar 

  18. Lu, X., Wetter, E., Bharti, N., Tatem, A.J., Bengtsson, L.: Approaching the limit of predictability in human mobility. Sci. Rep. 3, 2923 (2013)

    CrossRef  Google Scholar 

  19. Massey Jr., F.J.: The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46(253), 68–78 (1951)

    CrossRef  Google Scholar 

  20. Merity, S., Xiong, C., Bradbury, J., Socher, R.: Pointer sentinel mixture models. CoRR abs/1609.07843 (2016)

    Google Scholar 

  21. Mokhtar, S.B., et al.: PRIVA’MOV: analysing human mobility through multi-sensor datasets. In: NetMob 2017 (2017)

    Google Scholar 

  22. Newman, M.E.: Power laws, pareto distributions and Zipf’s law. Contemp. Phys. 46(5), 323–351 (2005)

    CrossRef  Google Scholar 

  23. Pérez-Cruz, F.: Kullback-Leibler divergence estimation of continuous distributions. In: 2008 IEEE International Symposium on Information Theory, pp. 1666–1670 (2008)

    Google Scholar 

  24. Prelov, V.V., van der Meulen, E.C.: Mutual information, variation, and Fano’s inequality. Probl. Inf. Trans. 44(3), 185–197 (2008)

    CrossRef  Google Scholar 

  25. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    CrossRef  Google Scholar 

  26. Smith, G., Wieser, R., Goulding, J., Barrack, D.: A refined limit on the predictability of human mobility. In: 2014 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 88–94. IEEE (2014)

    Google Scholar 

  27. Song, C., Qu, Z., Blumm, N., Barabási, A.L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010)

    CrossRef  MathSciNet  Google Scholar 

  28. Song, L., Kotz, D., Jain, R., He, X.: Evaluating next-cell predictors with extensive Wi-Fi mobility data. IEEE Trans. Mob. Comput. 5(12), 1633–1649 (2006)

    CrossRef  Google Scholar 

  29. Storer, J.A.: Data Compression: Methods and Theory. Computer Science Press, Inc., Rockville (1987)

    Google Scholar 

  30. Yan, X.Y., Han, X.P., Wang, B.H., Zhou, T.: Diversity of individual mobility patterns and emergence of aggregated scaling laws. Sci. Rep. 3, 2678 (2013)

    CrossRef  Google Scholar 

  31. Zhao, Z.D., Cai, S.M., Lu, Y.: Non-Markovian character in human mobility online and offline. Chaos: Interdisc. J. Nonlinear Sci. 25(6), 063106 (2015)

    CrossRef  Google Scholar 

  32. Zheng, Y., Xie, X., Ma, W.Y.: Geolife: a collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 33(2), 32–39 (2010)

    Google Scholar 

  33. Zilly, J.G., Srivastava, R.K., Koutník, J., Schmidhuber, J.: Recurrent highway networks. In: ICML (2017)

    Google Scholar 

  34. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory 24(5), 530–536 (1978)

    CrossRef  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research work was partially supported by the Swiss National Science Foundation grant 157160. This research was also supported by the ADAPT Research Centre, funded under the SFI Research Centres Programme (Grant 13/ RC/2106) and is co-funded under the European Regional Development Funds. The research was also supported by an IBM Shared University Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaibhav Kulkarni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Kulkarni, V., Mahalunkar, A., Garbinato, B., Kelleher, J.D. (2019). On the Inability of Markov Models to Capture Criticality in Human Mobility. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Image Processing. ICANN 2019. Lecture Notes in Computer Science(), vol 11729. Springer, Cham. https://doi.org/10.1007/978-3-030-30508-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30508-6_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30507-9

  • Online ISBN: 978-3-030-30508-6

  • eBook Packages: Computer ScienceComputer Science (R0)