Skip to main content

Analysis of Dogs’ Sleep Patterns Using Convolutional Neural Networks

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11729)

Abstract

Video-based analysis is one of the most important tools of animal behavior and animal welfare scientists. While automatic analysis systems exist for many species, this problem has not yet been adequately addressed for one of the most studied species in animal science—dogs. In this paper we describe a system developed for analyzing sleeping patterns of kenneled dogs, which may serve as indicator of their welfare. The system combines convolutional neural networks with classical data processing methods, and works with very low quality video from cameras installed in dogs shelters.

Keywords

  • Convolutional neural networks
  • Animal science
  • Animal welfare
  • Computer vision

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-30508-6_38
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-30508-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Notes

  1. 1.

    See: https://www.fitbark.com/.

  2. 2.

    See: https://www.whistle.com/.

  3. 3.

    See: https://petpace.com/.

  4. 4.

    The study was approved by the ethical panels of both institutions; protocol numbers: University of Salford Ethical Approval Panel - STR1617-80, CEUA/UFOP (Brazil) - 2017/04.

  5. 5.

    It should be noted that the chosen end-to-end architecture has a drawback of simultaneous detection of the same dog as sleeping and awake due to its detection of two objects (sleeping and awake dog) independently. However, this happens in very rare cases and can be overcome by using a higher confidence level for classification.

References

  1. Arney, D.: What is animal welfare and how is it assessed?. Sustainable Agriculture, p. 311 (2012)

    Google Scholar 

  2. Burghardt, T., Ćalić, J.: Analysing animal behaviour in wildlife videos using face detection and tracking. In: IEE Proceedings-Vision, Image and Signal Processing, vol. 153, no. 3, pp. 305–312 (2006)

    CrossRef  Google Scholar 

  3. Ahrendt, P., Gregersen, T., Karstoft, H.: Development of a real-time computer vision system for tracking loose-housed pigs. Comput. Electron. Agric. 76(2), 169–174 (2011)

    CrossRef  Google Scholar 

  4. Tillett, R., Onyango, C., Marchant, J.: Using model-based image processing to track animal movements. Comput. Electron. Agric. 17(2), 249–261 (1997)

    CrossRef  Google Scholar 

  5. Sergeant, D., Boyle, R., Forbes, M.: Computer visual tracking of poultry. Comput. Electron. Agric. 21(1), 1–18 (1998)

    CrossRef  Google Scholar 

  6. Noldus, L.P., Spink, A.J., Tegelenbosch, R.A.: Computerised video tracking, movement analysis and behaviour recognition in insects. Comput. Electron. Agric. 35(2), 201–227 (2002)

    CrossRef  Google Scholar 

  7. Van de Weerd, H., et al.: Validation of a new system for the automatic registration of behaviour in mice and rats. Behav. Process. 53(1), 11–20 (2001)

    CrossRef  Google Scholar 

  8. Spink, A., Tegelenbosch, R., Buma, M., Noldus, L.: The ethovision video tracking system–a tool for behavioral phenotyping of transgenic mice. Physiol. Behav. 73(5), 731–744 (2001)

    CrossRef  Google Scholar 

  9. Valletta, J.J., Torney, C., Kings, M., Thornton, A., Madden, J.: Applications of machine learning in animal behaviour studies. Anim. Behav. 124, 203–220 (2017)

    CrossRef  Google Scholar 

  10. Palestrini, C., Minero, M., Cannas, S., Rossi, E., Frank, D.: Video analysis of dogs with separation-related behaviors. Appl. Anim. Behav. Sci. 124(1), 61–67 (2010)

    CrossRef  Google Scholar 

  11. Barnard, S., et al.: Quick, accurate, smart: 3D computer vision technology helps assessing confined animals’ behaviour. PloS One 11(7), e0158748 (2016)

    CrossRef  Google Scholar 

  12. Pons, P., Jaen, J., Catala, A.: Assessing machine learning classifiers for the detection of animals’ behavior using depth-based tracking. Expert Syst. Appl. 86, 235–246 (2017)

    CrossRef  Google Scholar 

  13. Mealin, S., Domínguez, I.X., Roberts, D.L.: Semi-supervised classification of static canine postures using the microsoft kinect. In: Proceedings of the Third International Conference on Animal-Computer Interaction, p. 16, ACM (2016)

    Google Scholar 

  14. Kaplun, D., et al.: Animal health informatics: towards a generic framework for automatic behavior analysis. In: Proceedings of the 12th International Conference on Health Informatics (HEALTHINF 2019) (2019)

    Google Scholar 

  15. Amir, S., Zamansky, A., van der Linden, D.: K9-blyzer-towards video-based automatic analysis of canine behavior. In: Proceedings of Animal-Computer Interaction 2017 (2017)

    Google Scholar 

  16. Alcaidinho, J., Valentin, G., Yoder, N., Tai, S., Mundell, P., Jackson, M.: Assessment of working dog suitability from quantimetric data. In: NordiCHI 2014, Helsinki, Finland, 26–30 Oct 2014. Georgia Institute of Technology (2014)

    Google Scholar 

  17. Alcaidinho, J., et al.: Leveraging mobile technology to increase the permanent adoption of shelter dogs. In: Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile Devices and Services, pp. 463–469. ACM (2015)

    Google Scholar 

  18. Zamansky, A., van der Linden, D., Hadar, I., Bleuer-Elsner, S.: Log my dog: perceived impact of dog activity tracking. IEEE Computer (2018)

    Google Scholar 

  19. Zamansky, A., van der Linden, D.: Activity trackers for raising guide dogs: challenges and opportunities. IEEE Technol. Soc. 37(4), 62–69 (2018)

    CrossRef  Google Scholar 

  20. van der Linden, D., Zamansky, A., Hadar, I., Craggs, B., Rashid, A.: Buddy’s wearable is not your buddy: privacy implications of pet wearables. In: Forthcoming in IEEE Security and Privacy

    Google Scholar 

  21. Ladha, C., Hammerla, N., Hughes, E., Olivier, P., Ploetz, T.: Dog’s life: wearable activity recognition for dogs. In: Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418. ACM (2013)

    Google Scholar 

  22. Brugarolas, R., Loftin, R.T., Yang, P., Roberts, D.L., Sherman, B., Bozkurt, A.: Behavior recognition based on machine learning algorithms for a wireless canine machine interface. In: 2013 IEEE International Conference on Body Sensor Networks (BSN), pp. 1–5. IEEE (2013)

    Google Scholar 

  23. Gerencsér, L., Vásárhelyi, G., Nagy, M., Vicsek, T., Miklósi, A.: Identification of behaviour in freely moving dogs (canis familiaris) using inertial sensors. PloS One 8(10), e77814 (2013)

    CrossRef  Google Scholar 

  24. Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2015)

    CrossRef  Google Scholar 

  25. Huang, J., et al.: Speed/accuracy trade-offs for modern convolutional object detectors. CoRR, vol. abs/1611.10012 (2016)

    Google Scholar 

  26. Lin, T., et al.: Microsoft COCO: common objects in context. CoRR, vol. abs/1405.0312 (2014)

    CrossRef  Google Scholar 

  27. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. CoRR, vol. abs/1704.04861 (2017)

    Google Scholar 

  28. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR, vol. abs/1512.03385 (2015)

    Google Scholar 

  29. Dawkins, M.: Using behaviour to assess animal welfare. Anim. Welf. 13(1), 3–7 (2004)

    Google Scholar 

Download references

Acknowledgement

This work has been supported by the NVIDIA GPU grant program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Zamansky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Zamansky, A. et al. (2019). Analysis of Dogs’ Sleep Patterns Using Convolutional Neural Networks. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Image Processing. ICANN 2019. Lecture Notes in Computer Science(), vol 11729. Springer, Cham. https://doi.org/10.1007/978-3-030-30508-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30508-6_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30507-9

  • Online ISBN: 978-3-030-30508-6

  • eBook Packages: Computer ScienceComputer Science (R0)