Skip to main content

An Attention-Based ID-CNNs-CRF Model for Named Entity Recognition on Clinical Electronic Medical Records

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11731))

Abstract

Named Entity Recognition (NER) on Clinical Electronic Medical Records (CEMR) is a fundamental step in extracting disease knowledge by identifying specific entity terms such as diseases, symptoms, etc. However, the state-of-the-art NER methods based on Long Short-Term Memory (LSTM) fail to fully exploit GPU parallelism under the massive medical records. Although a novel NER method based on Iterated Dilated CNNs (ID-CNNs) can accelerate network computing, it tends to ignore the word-order feature and semantic information of the current word. In order to enhance the performance of ID-CNNs-based models on NER tasks, an attention-based ID-CNNs-CRF model which combines word-order feature and local context is proposed. Firstly, Position Embedding is utilized to fuse word-order information. Secondly, ID-CNNs architecture is used to rapidly extract global semantic information. Simultaneously, the attention mechanism is employed to pay attention to the local context. Finally, we apply the CRF to obtain the optimal tag sequence. Experiments conducted on two CEMR datasets show that our model outperforms traditional ones. The F1-scores of 94.55% and 91.17% are obtained respectively on these two datasets and both are better than LSTMs-based models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition. arXiv preprint arXiv:1603.01360 (2016)

  2. Ma, X., Hovy, E.: End-to-end sequence labeling via bi-directional lstm-cnns-crf. arXiv preprint arXiv:1603.01354 (2016). https://doi.org/10.18653/v1/p16-1101

  3. Rondeau, M.-A., Su, Y.: LSTM-based NeuroCRFs for named entity recognition. In: INTERSPEECH, pp. 665–669 (2016). https://doi.org/10.21437/interspeech.2016-288

  4. Rei, M., Crichton, G.K., Pyysalo, S.: Attending to characters in neural sequence labeling models. arXiv preprint arXiv:1611.04361 (2016)

  5. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12(Aug), 2493–2537 (2011). https://doi.org/10.1016/j.chemolab.2011.03.009

    Article  MATH  Google Scholar 

  6. Wang, C., Wei, C., Bo, X.: Named entity recognition with gated convolutional neural networks (2017). https://doi.org/10.1007/978-3-319-69005-6_10

    Google Scholar 

  7. Strubell, E., Verga, P., Belanger, D., McCallum, A.: Fast and accurate sequence labeling with iterated dilated convolutions. arXiv preprint arXiv:1702.02098 138 (2017)

  8. Hirschman, L., Morgan, A.A., Yeh, A.S.: Rutabaga by any other name: extracting biological names. J. Biomed. Inform. 35(4), 247–259 (2002). https://doi.org/10.1016/s1532-0464(03)00014-5

    Article  Google Scholar 

  9. Han, X., Ruonan, R.: The method of medical named entity recognition based on semantic model and improved SVM-KNN algorithm. In: 2011 Seventh International Conference on Semantics, Knowledge and Grids, pp. 21–27. IEEE (2011). https://doi.org/10.1109/skg.2011.24

  10. Collier, N., Nobata, C., Tsujii, J.-I.: Extracting the names of genes and gene products with a hidden Markov model. In: Proceedings of the 18th Conference on Computational linguistics-Volume 1, pp. 201–207. Association for Computational Linguistics (2000). https://doi.org/10.3115/990820.990850

  11. GuoDong, Z., Jian, S.: Exploring deep knowledge resources in biomedical name recognition. In: JNLPBA Workshop, pp. 96–99. Association for Computational Linguistics (2004). https://doi.org/10.3115/1567594.1567616

  12. Chieu, H.L., Ng, H.T.: Named entity recognition with a maximum entropy approach. In: Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003-Volume 4, pp. 160–163. Association for Computational Linguistics (2003). https://doi.org/10.3115/1119176.1119199

  13. Leaman, R., Islamaj Doğan, R., Lu, Z.: DNorm: disease name normalization with pairwise learning to rank. Bioinformatics 29(22), 2909–2917 (2013). https://doi.org/10.1093/bioinformatics/btt474

    Article  Google Scholar 

  14. Kaewphan, S., Van Landeghem, S., Ohta, T., Van de Peer, Y., Ginter, F., Pyysalo, S.: Cell line name recognition in support of the identification of synthetic lethality in cancer from text. Bioinformatics 32(2), 276–282 (2015). https://doi.org/10.1093/bioinformatics/btv570

    Article  Google Scholar 

  15. Zhu, Q., Li, X., Conesa, A., Pereira, C.: GRAM-CNN: a deep learning approach with local context for named entity recognition in biomedical text. Bioinformatics 34(9), 1547–1554 (2017). https://doi.org/10.1093/bioinformatics/btx815

    Article  Google Scholar 

  16. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759 (2016). https://doi.org/10.18653/v1/e17-2068

  17. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. arXiv preprint arXiv:1405.4053 (2014)

  18. http://case.medlive.cn/all/case-case/index.html?ver=branch

  19. https://github.com/fxsjy/jieba

  20. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

  21. Luo, L., et al.: An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition. Bioinformatics 34(8), 1381–1388 (2017). https://doi.org/10.1093/bioinformatics/btx761

    Article  Google Scholar 

  22. Bharadwaj, A., Mortensen, D., Dyer, C., Carbonell, J.: Phonologically aware neural model for named entity recognition in low resource transfer settings. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 1462–1472 (2016). https://doi.org/10.18653/v1/d16-1153

  23. Li, J., Zhou, M., Qi, G., Lao, N., Ruan, T., Du, J. (eds.): CCKS 2017. CCIS, vol. 784. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-7359-5

    Book  Google Scholar 

  24. Zhao, J., Harmelen, F., Tang, J., Han, X., Wang, Q., Li, X. (eds.): CCKS 2018. CCIS, vol. 957. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-3146-6

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaochun Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, M., Xiao, Q., Wu, S., Deng, K. (2019). An Attention-Based ID-CNNs-CRF Model for Named Entity Recognition on Clinical Electronic Medical Records. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop and Special Sessions. ICANN 2019. Lecture Notes in Computer Science(), vol 11731. Springer, Cham. https://doi.org/10.1007/978-3-030-30493-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30493-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30492-8

  • Online ISBN: 978-3-030-30493-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics