Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11731))

Included in the following conference series:


This paper explores a simple method for obtaining contextual word representations. Recently, it was shown that random sentence representations obtained from echo state networks (ESNs) were able to achieve near state-of-the-art results in several sequence classification tasks. We explore a similar direction while considering a sequence labeling task specifically named entity recognition (NER). The idea is to simply use reservoir states of an ESN as contextual word embeddings by passing pre-trained word-embeddings as its input. Experimental results show that our approach achieves competitive results in terms of accuracy and faster training times when compared to state-of-the-art methods. In addition, we provide an empirical evaluation of hyper-parameters that influence this performance.

R. Ramamurthy and R. Stenzel—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. 1.


  1. Akbik, A., Blythe, D., Vollgraf, R.: Contextual string embeddings for sequence labeling. In: Proceedings of International Conference on Computational Linguistics (2018)

    Google Scholar 

  2. Benikova, D., Biemann, C., Kisselew, M., Pado, S.: Germeval 2014 Named Entity Recognition Shared Task (2014)

    Google Scholar 

  3. Bowman, S.R., Angeli, G., Potts, C., Manning, C.D.: A large annotated corpus for learning natural language inference. arXiv preprint arXiv:1508.05326 (2015)

  4. Butcher, J.B., Verstraeten, D., Schrauwen, B., Day, C., Haycock, P.: Reservoir computing and extreme learning machines for non-linear time-series data analysis. Neural Netw. 38, 76–89 (2013)

    Article  Google Scholar 

  5. Conneau, A., Kiela, D., Schwenk, H., Barrault, L., Bordes, A.: Supervised learning of universal sentence representations from natural language inference data. arXiv preprint arXiv:1705.02364 (2017)

  6. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)

    Article  Google Scholar 

  7. Doya, K.: Bifurcations in the learning of recurrent neural networks. In: Proceedings IEEE International Symposium on Circuits and Systems (1992)

    Google Scholar 

  8. Frank, S.L.: Learn more by training less: systematicity in sentence processing by recurrent networks. Connect. Sci. 18(3), 287–302 (2006)

    Article  Google Scholar 

  9. Gallicchio, C., Micheli, A., Pedrelli, L.: Deep echo state networks for diagnosis of Parkinson’s disease. arXiv preprint arXiv:1802.06708 (2018)

  10. Hinaut, X., Dominey, P.F.: On-line processing of grammatical structure using reservoir computing. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012. LNCS, vol. 7552, pp. 596–603. Springer, Heidelberg (2012).

    Chapter  Google Scholar 

  11. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004)

    Article  Google Scholar 

  12. Jäger, H.: The “Echo State” approach to analysing and training recurrent neural networks. Technical report 148, GMD (2001)

    Google Scholar 

  13. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759 (2016)

  14. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)

  15. Kiros, R., et al.: Skip-thought vectors. In: Proceedings of Advances in Neural Information Processing Systems, pp. 3294–3302 (2015)

    Google Scholar 

  16. Lin, X., Yang, Z., Song, Y.: Short-term stock price prediction based on echo state networks. Expert Syst. Appl. 36(3), 7313–7317 (2009)

    Article  Google Scholar 

  17. Lukoševičius, M.: A practical guide to applying echo state networks. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 659–686. Springer, Heidelberg (2012).

    Chapter  Google Scholar 

  18. Ma, Q., Shen, L., Cottrell, G.W.: Deep-ESN: a multiple projection-encoding hierarchical reservoir computing framework. arXiv preprint arXiv:1711.05255 (2017)

  19. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  20. Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Lingvisticae Investigationes 30(1), 3–26 (2007)

    Article  Google Scholar 

  21. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: Proceedings of the ICML (2013)

    Google Scholar 

  22. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, pp. 1532–1543 (2014)

    Google Scholar 

  23. Peters, M.E., et al.: Deep contextualized word representations. arXiv preprint arXiv:1802.05365 (2018)

  24. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: SQuAD: 100,000+ questions for machine comprehension of text. arXiv preprint arXiv:1606.05250 (2016)

  25. Ramamurthy, R., Bauckhage, C., Buza, K., Wrobel, S.: Using echo state networks for cryptography. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10614, pp. 663–671. Springer, Cham (2017).

    Chapter  Google Scholar 

  26. Ramamurthy, R., Bauckhage, C., Sifa, R., Wrobel, S.: Policy learning using SPSA. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 3–12. Springer, Cham (2018).

    Chapter  Google Scholar 

  27. Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of Conference on Empirical Methods in Natural Language Processing (2013)

    Google Scholar 

  28. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Proceedings of Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)

    Google Scholar 

  29. Sutton, C., McCallum, A., et al.: An introduction to conditional random fields. Found. Trends Mach. Learn. 4(4), 267–373 (2012)

    Article  Google Scholar 

  30. Tong, M.H., Bickett, A.D., Christiansen, E.M., Cottrell, G.W.: Learning grammatical structure with echo state networks. Neural Netw. 20(3), 424–432 (2007)

    Article  Google Scholar 

  31. Toutanova, K., Klein, D., Manning, C.D., Singer, Y.: Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of Conference on HLT-NAACL (2003)

    Google Scholar 

  32. Wieting, J., Kiela, D.: No training required: exploring random encoders for sentence classification. arXiv preprint arXiv:1901.10444 (2019)

  33. Yadav, V., Bethard, S.: A survey on recent advances in named entity recognition from deep learning models. In: Proceedings of International Conference on Computational Linguistics (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Rajkumar Ramamurthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramamurthy, R., Stenzel, R., Sifa, R., Ladi, A., Bauckhage, C. (2019). Echo State Networks for Named Entity Recognition. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop and Special Sessions. ICANN 2019. Lecture Notes in Computer Science(), vol 11731. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30492-8

  • Online ISBN: 978-3-030-30493-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics