Balasubramanian, K., Lebanon, G.: The landmark selection method for multiple output prediction. In: Proceedings of the 29th International Conference on Machine Learning, pp. 283–290 (2012)
Google Scholar
Bhatia, K., Jain, H., Kar, P., Varma, M., Jain, P.: Sparse local embeddings for extreme multi-label classification. In: Advances in Neural Information Processing Systems, vol. 28, pp. 730–738 (2015)
Google Scholar
Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recognit. 37(9), 1757–1771 (2004). https://doi.org/10.1016/j.patcog.2004.03.009
CrossRef
Google Scholar
Briggs, F., et al.: The 9th Annual MLSP Competition: New Methods for Acoustic Classification of Multiple Simultaneous Bird Species in a Noisy Environment (2013). https://doi.org/10.1109/MLSP.2013.6661934
Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in Neural Information Processing Systems, vol. 14, pp. 681–687 (2001)
Google Scholar
Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 22–30. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24775-3_5
CrossRef
Google Scholar
Goncalves, E.C., Plastino, A., Freitas, A.A.: A genetic algorithm for optimizing the label ordering in multi-label classifier chains. In: Proceedings of the 25th International Conference on Tools with Artificial Intelligence, pp. 469–476 (2013). https://doi.org/10.1109/ICTAI.2013.76
Hsu, D., Kakade, S.M., Langford, J., Zhang, T.: Multi-label prediction via compressed sensing. In: Advances in Neural Information Processing Systems, vol. 22, pp. 772–780 (2009)
Google Scholar
Klimt, B., Yang, Y.: The Enron corpus: a new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30115-8_22
CrossRef
Google Scholar
Pestian, J.P., et al.: A shared task involving multi-label classification of clinical free text. In: Proceedings of the Workshop on BioNLP 2007: Biological, Translational, and Clinical Language Processing, pp. 97–104 (2007)
Google Scholar
Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS (LNAI), vol. 5782, pp. 254–269. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04174-7_17
CrossRef
Google Scholar
Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Mach. Learn. 37(3), 297–336 (1999). https://doi.org/10.1023/A:1007614523901
CrossRef
MATH
Google Scholar
Tagami, Y.: AnnexML: approximate nearest neighbor search for extreme multi-label classification. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 455–464 (2017). https://doi.org/10.1145/3097983.3097987
Tagami, Y.: Learning extreme multi-label tree-classifier via nearest neighbor graph partitioning. In: Proceedings of the 26th International Conference on World Wide Web, pp. 845–846 (2017). https://doi.org/10.1145/3041021.3054204
Tai, F., Lin, H.T.: Multilabel classification with principal label space transformation. Neural Comput. 24(9), 2508–2542 (2012). https://doi.org/10.1162/NECO_a_00320
MathSciNet
CrossRef
MATH
Google Scholar
Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.P.: Multi-label classification of music into emotions. In: Proceedings of the 9th International Conference on Music Information Retrieval, vol. 8, pp. 325–330 (2008). https://doi.org/10.1186/1687-4722-2011-426793
Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data Warehous. Min. 2007, 1–13 (2007). https://doi.org/10.4018/jdwm.2007070101
CrossRef
Google Scholar
Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 667–685. Springer, Boston (2010). https://doi.org/10.1007/978-0-387-09823-4_34
CrossRef
Google Scholar
Tsoumakas, G., Vlahavas, I.: Random k-labelsets: an ensemble method for multilabel classification. In: Kok, J.N., Koronacki, J., Mantaras, R.L., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74958-5_38
CrossRef
Google Scholar
Zhou, W.-J., Yu, Y., Zhang, M.L.: Binary linear compression for multi-label classification. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 3546–3552 (2017). https://doi.org/10.24963/ijcai.2017/496
Zhang, Y., Schneider, J.: Multi-label output codes using canonical correlation analysis. In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, vol. 15, pp. 873–882 (2011)
Google Scholar