Skip to main content

Interdependence Model for Multi-label Classification

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11730)


The multi-label classification problem is a supervised learning problem that aims to predict multiple labels for each data instance. One of the key issues in designing multi-label learning approaches is how to incorporate dependencies among different labels. In this study, we propose a new approach called the interdependence model, which consists of a set of single-label predictors each of which predicts a particular label using the other labels. The proposed model can directly consider label interdependencies by reusing arbitrary conventional probabilistic models for single-label classification. We consider three prediction methods and one accelerated method for making predictions with the interdependence model. Experiments show the superior prediction performance of the proposed methods in several evaluation metrics, especially when there is a large number of candidate labels or when labels are partially given in the test phase.


  • Multi-label classification
  • Supervised learning
  • Interdependence model

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-30490-4_6
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-30490-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.


  1. 1.


  1. Balasubramanian, K., Lebanon, G.: The landmark selection method for multiple output prediction. In: Proceedings of the 29th International Conference on Machine Learning, pp. 283–290 (2012)

    Google Scholar 

  2. Bhatia, K., Jain, H., Kar, P., Varma, M., Jain, P.: Sparse local embeddings for extreme multi-label classification. In: Advances in Neural Information Processing Systems, vol. 28, pp. 730–738 (2015)

    Google Scholar 

  3. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recognit. 37(9), 1757–1771 (2004).

    CrossRef  Google Scholar 

  4. Briggs, F., et al.: The 9th Annual MLSP Competition: New Methods for Acoustic Classification of Multiple Simultaneous Bird Species in a Noisy Environment (2013).

  5. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in Neural Information Processing Systems, vol. 14, pp. 681–687 (2001)

    Google Scholar 

  6. Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 22–30. Springer, Heidelberg (2004).

    CrossRef  Google Scholar 

  7. Goncalves, E.C., Plastino, A., Freitas, A.A.: A genetic algorithm for optimizing the label ordering in multi-label classifier chains. In: Proceedings of the 25th International Conference on Tools with Artificial Intelligence, pp. 469–476 (2013).

  8. Hsu, D., Kakade, S.M., Langford, J., Zhang, T.: Multi-label prediction via compressed sensing. In: Advances in Neural Information Processing Systems, vol. 22, pp. 772–780 (2009)

    Google Scholar 

  9. Klimt, B., Yang, Y.: The Enron corpus: a new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004).

    CrossRef  Google Scholar 

  10. Pestian, J.P., et al.: A shared task involving multi-label classification of clinical free text. In: Proceedings of the Workshop on BioNLP 2007: Biological, Translational, and Clinical Language Processing, pp. 97–104 (2007)

    Google Scholar 

  11. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS (LNAI), vol. 5782, pp. 254–269. Springer, Heidelberg (2009).

    CrossRef  Google Scholar 

  12. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Mach. Learn. 37(3), 297–336 (1999).

    CrossRef  MATH  Google Scholar 

  13. Tagami, Y.: AnnexML: approximate nearest neighbor search for extreme multi-label classification. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 455–464 (2017).

  14. Tagami, Y.: Learning extreme multi-label tree-classifier via nearest neighbor graph partitioning. In: Proceedings of the 26th International Conference on World Wide Web, pp. 845–846 (2017).

  15. Tai, F., Lin, H.T.: Multilabel classification with principal label space transformation. Neural Comput. 24(9), 2508–2542 (2012).

    MathSciNet  CrossRef  MATH  Google Scholar 

  16. Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.P.: Multi-label classification of music into emotions. In: Proceedings of the 9th International Conference on Music Information Retrieval, vol. 8, pp. 325–330 (2008).

  17. Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data Warehous. Min. 2007, 1–13 (2007).

    CrossRef  Google Scholar 

  18. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 667–685. Springer, Boston (2010).

    CrossRef  Google Scholar 

  19. Tsoumakas, G., Vlahavas, I.: Random k-labelsets: an ensemble method for multilabel classification. In: Kok, J.N., Koronacki, J., Mantaras, R.L., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer, Heidelberg (2007).

    CrossRef  Google Scholar 

  20. Zhou, W.-J., Yu, Y., Zhang, M.L.: Binary linear compression for multi-label classification. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 3546–3552 (2017).

  21. Zhang, Y., Schneider, J.: Multi-label output codes using canonical correlation analysis. In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, vol. 15, pp. 873–882 (2011)

    Google Scholar 

Download references


This work was supported by JSPS KAKENHI Grant Number 15H01704.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Kosuke Yoshimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Yoshimura, K., Iwase, T., Baba, Y., Kashima, H. (2019). Interdependence Model for Multi-label Classification. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Text and Time Series. ICANN 2019. Lecture Notes in Computer Science(), vol 11730. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30489-8

  • Online ISBN: 978-3-030-30490-4

  • eBook Packages: Computer ScienceComputer Science (R0)