Skip to main content

Interdependence Model for Multi-label Classification

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11730)

Abstract

The multi-label classification problem is a supervised learning problem that aims to predict multiple labels for each data instance. One of the key issues in designing multi-label learning approaches is how to incorporate dependencies among different labels. In this study, we propose a new approach called the interdependence model, which consists of a set of single-label predictors each of which predicts a particular label using the other labels. The proposed model can directly consider label interdependencies by reusing arbitrary conventional probabilistic models for single-label classification. We consider three prediction methods and one accelerated method for making predictions with the interdependence model. Experiments show the superior prediction performance of the proposed methods in several evaluation metrics, especially when there is a large number of candidate labels or when labels are partially given in the test phase.

Keywords

  • Multi-label classification
  • Supervised learning
  • Interdependence model

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-30490-4_6
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-30490-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Notes

  1. 1.

    http://mulan.sourceforge.net.

References

  1. Balasubramanian, K., Lebanon, G.: The landmark selection method for multiple output prediction. In: Proceedings of the 29th International Conference on Machine Learning, pp. 283–290 (2012)

    Google Scholar 

  2. Bhatia, K., Jain, H., Kar, P., Varma, M., Jain, P.: Sparse local embeddings for extreme multi-label classification. In: Advances in Neural Information Processing Systems, vol. 28, pp. 730–738 (2015)

    Google Scholar 

  3. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recognit. 37(9), 1757–1771 (2004). https://doi.org/10.1016/j.patcog.2004.03.009

    CrossRef  Google Scholar 

  4. Briggs, F., et al.: The 9th Annual MLSP Competition: New Methods for Acoustic Classification of Multiple Simultaneous Bird Species in a Noisy Environment (2013). https://doi.org/10.1109/MLSP.2013.6661934

  5. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in Neural Information Processing Systems, vol. 14, pp. 681–687 (2001)

    Google Scholar 

  6. Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 22–30. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24775-3_5

    CrossRef  Google Scholar 

  7. Goncalves, E.C., Plastino, A., Freitas, A.A.: A genetic algorithm for optimizing the label ordering in multi-label classifier chains. In: Proceedings of the 25th International Conference on Tools with Artificial Intelligence, pp. 469–476 (2013). https://doi.org/10.1109/ICTAI.2013.76

  8. Hsu, D., Kakade, S.M., Langford, J., Zhang, T.: Multi-label prediction via compressed sensing. In: Advances in Neural Information Processing Systems, vol. 22, pp. 772–780 (2009)

    Google Scholar 

  9. Klimt, B., Yang, Y.: The Enron corpus: a new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30115-8_22

    CrossRef  Google Scholar 

  10. Pestian, J.P., et al.: A shared task involving multi-label classification of clinical free text. In: Proceedings of the Workshop on BioNLP 2007: Biological, Translational, and Clinical Language Processing, pp. 97–104 (2007)

    Google Scholar 

  11. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS (LNAI), vol. 5782, pp. 254–269. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04174-7_17

    CrossRef  Google Scholar 

  12. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Mach. Learn. 37(3), 297–336 (1999). https://doi.org/10.1023/A:1007614523901

    CrossRef  MATH  Google Scholar 

  13. Tagami, Y.: AnnexML: approximate nearest neighbor search for extreme multi-label classification. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 455–464 (2017). https://doi.org/10.1145/3097983.3097987

  14. Tagami, Y.: Learning extreme multi-label tree-classifier via nearest neighbor graph partitioning. In: Proceedings of the 26th International Conference on World Wide Web, pp. 845–846 (2017). https://doi.org/10.1145/3041021.3054204

  15. Tai, F., Lin, H.T.: Multilabel classification with principal label space transformation. Neural Comput. 24(9), 2508–2542 (2012). https://doi.org/10.1162/NECO_a_00320

    MathSciNet  CrossRef  MATH  Google Scholar 

  16. Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.P.: Multi-label classification of music into emotions. In: Proceedings of the 9th International Conference on Music Information Retrieval, vol. 8, pp. 325–330 (2008). https://doi.org/10.1186/1687-4722-2011-426793

  17. Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data Warehous. Min. 2007, 1–13 (2007). https://doi.org/10.4018/jdwm.2007070101

    CrossRef  Google Scholar 

  18. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 667–685. Springer, Boston (2010). https://doi.org/10.1007/978-0-387-09823-4_34

    CrossRef  Google Scholar 

  19. Tsoumakas, G., Vlahavas, I.: Random k-labelsets: an ensemble method for multilabel classification. In: Kok, J.N., Koronacki, J., Mantaras, R.L., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74958-5_38

    CrossRef  Google Scholar 

  20. Zhou, W.-J., Yu, Y., Zhang, M.L.: Binary linear compression for multi-label classification. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 3546–3552 (2017). https://doi.org/10.24963/ijcai.2017/496

  21. Zhang, Y., Schneider, J.: Multi-label output codes using canonical correlation analysis. In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, vol. 15, pp. 873–882 (2011)

    Google Scholar 

Download references

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number 15H01704.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosuke Yoshimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Yoshimura, K., Iwase, T., Baba, Y., Kashima, H. (2019). Interdependence Model for Multi-label Classification. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Text and Time Series. ICANN 2019. Lecture Notes in Computer Science(), vol 11730. Springer, Cham. https://doi.org/10.1007/978-3-030-30490-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30490-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30489-8

  • Online ISBN: 978-3-030-30490-4

  • eBook Packages: Computer ScienceComputer Science (R0)