Abstract
Neuro-encoded expression programming (NEEP) that aims to offer a novel continuous representation of combinatorial encoding for genetic programming methods is proposed in this paper. Genetic programming with linear representation uses nature-inspired operators (e.g., crossover, mutation) to tune expressions and finally search out the best explicit function to simulate data. The encoding mechanism is essential for genetic programmings to find a desirable solution efficiently. However, the linear representation methods manipulate the expression tree in discrete solution space, where a small change of the input can cause a large change of the output. The unsmooth landscapes destroy the local information and make difficulty in searching. The neuro-encoded expression programming constructs the gene string with recurrent neural network (RNN) and the weights of the network are optimized by powerful continuous evolutionary algorithms. The neural network mappings smoothen the sharp fitness landscape and provide rich neighborhood information to find the best expression. The experiments indicate that the novel approach improves training efficiency and reduces test errors on several well-known symbolic regression problems.
Keywords
- Genetic programming
- Symbolic regression
- Neural network
- Gene expression programming
- Evolutionary algorithm
A. Anjum and S. Sun—Contribute equally to this article.
This is a preview of subscription content, access via your institution.
Buying options




References
Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size. In: 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1769–1776 (2005). https://doi.org/10.1109/CEC.2005.1554902
Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A., Jozefowicz, R., Bengio, S.: Generating sentences from a continuous space. In: Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning, pp. 10–21 (2016). https://doi.org/10.18653/v1/K16-1002
Brameier, M.F., Banzhaf, W.: Basic concepts of linear genetic programming. In: Linear Genetic Programming, pp. 13–34. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-31030-5_2
Chatzarakis, G.E., Li, T.: Oscillation criteria for delay and advanced differential equations with nonmonotone arguments. Complexity 2018, 1–18 (2018). https://doi.org/10.1155/2018/8237634
Chen, C.L.P., Zhang, T., Chen, L., Tam, S.C.: I-Ching divination evolutionary algorithm and its convergence analysis. IEEE Trans. Cybern. 47(1), 2–13 (2017). https://doi.org/10.1109/TCYB.2015.2512286
Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017)
Dick, G.: Sensitivity-like analysis for feature selection in genetic programming. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 401–408. ACM (2017). https://doi.org/10.1145/3071178.3071338
Fan, P., Xin, W., Ouyang, Y.: Approximation of discrete spatial data for continuous facility location design. Integr. Comput. Aided Eng. 21(4), 311–320 (2014). https://doi.org/10.3233/ICA-140466
Ferreira, C.: Automatically defined functions in gene expression programming. In: Nedjah, N., Mourelle, L.M., Abraham, A. (eds.) Genetic Systems Programming. SCI, vol. 13, pp. 21–56. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-32498-4_2
Ferreira, C.: Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst. 13(2), 87–129 (2001). https://doi.org/10.1007/3-540-32849-1
Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press, Cambridge (1992)
Huang, W., Oh, S.K., Pedrycz, W.: Hybrid fuzzy wavelet neural networks architecture based on polynomial neural networks and fuzzy set/relation inference-based wavelet neurons. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3452–3462 (2018). https://doi.org/10.1109/TNNLS.2017.2729589
Kataoka, Y., Matsubara, T., Uehara, K.: Image generation using generative adversarial networks and attention mechanism. In: IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), pp. 1–6 (2016). https://doi.org/10.1109/ICIS.2016.7550880
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the International Conference on Neural Networks, ICNN 1995, vol. 4, pp. 1942–1948 (1995). https://doi.org/10.1109/ICNN.1995.488968
Koza, J.R., Andre, D., Bennett III, F.H., Keane, M.A.: Use of automatically defined functions and architecture-altering operations in automated circuit synthesis with genetic programming. In: Proceedings of the First Annual Conference on Genetic Programming, pp. 132–140 (1996)
Langdon, W.B., Poli, R., McPhee, N.F., Koza, J.R.: Genetic programming: an introduction and tutorial, with a survey of techniques and applications. In: Fulcher, J., Jain, L.C. (eds.) Computational Intelligence: A Compendium. SCI, vol. 115, pp. 927–1028. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78293-3_22
Levy, O., Goldberg, Y.: Neural word embedding as implicit matrix factorization. In: Advances in Neural Information Processing Systems, pp. 2177–2185 (2014)
Liskowski, P., Bładek, I., Krawiec, K.: Neuro-guided genetic programming: prioritizing evolutionary search with neural networks. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1143–1150 (2018). https://doi.org/10.1145/3205455.3205629
Maehara, T., Marumo, N., Murota, K.: Continuous relaxation for discrete DC programming. Math. Programm. 169(1), 199–219 (2018). https://doi.org/10.1007/s10107-017-1139-2
Manjunath, G., Jaeger, H.: Echo state property linked to an input: exploring a fundamental characteristic of recurrent neural networks. Neural Comput. 25(3), 671–696 (2013). https://doi.org/10.1162/NECO_a_00411
McConaghy, T.: FFX: fast, scalable, deterministic symbolic regression technology. In: Riolo, R., Vladislavleva, E., Moore, J. (eds.) Genetic Programming Theory and Practice IX. Genetic and Evolutionary Computation, pp. 235–260. Springer, New York (2011). https://doi.org/10.1007/978-1-4614-1770-5_13
McDermott, J., et al.: Genetic programming needs better benchmarks. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, pp. 791–798 (2012). https://doi.org/10.1145/2330163.2330273
Mogren, O.: C-RNN-GAN: continuous recurrent neural networks with adversarial training (2016). arXiv preprint: arXiv:1611.09904
Nicolau, M., Agapitos, A., O’Neill, M., Brabazon, A.: Guidelines for defining benchmark problems in genetic programming. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 1152–1159 (2015). https://doi.org/10.1109/CEC.2015.7257019
Oltean, M., Grosan, C.: Evolving evolutionary algorithms using multi expression programming. In: The 7th European Conference on Artificial Life, vol. 2801, pp. 651–658 (2003). https://doi.org/10.1007/978-3-540-39432-7_70
O’Neill, M., Ryan, C.: Under the hood of grammatical evolution. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation, vol. 2, pp. 1143–1148 (1999)
Orzechowski, P., La Cava, W., Moore, J.H.: Where are we now?: A large benchmark study of recent symbolic regression methods. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1183–1190 (2018). https://doi.org/10.1145/3205455.3205539
Pardalos, P.M., Prokopyev, O.A., Busygin, S.: Continuous approaches for solving discrete optimization problems. In: Appa, G., Pitsoulis, L., Williams, H.P. (eds.) Handbook on Modelling for Discrete Optimization. International Series in Operations Research & Management Science, vol. 88, pp. 39–60. Springer, Boston (2006). https://doi.org/10.1007/0-387-32942-0_2
Poli, R.: A simple but theoretically-motivated method to control bloat in genetic programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 204–217. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36599-0_19
Rothlauf, F.: Analysis and design of representations for trees. In: Representations for Genetic and Evolutionary Algorithms, pp. 141–215. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-32444-5_6
Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009). https://doi.org/10.1016/j.neuron.2009.07.018
Wang, H., Qin, Z., Wan, T.: Text generation based on generative adversarial nets with latent variables. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) 2018 Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 92–103 (2018). https://doi.org/10.1007/978-3-319-93037-4_8
Wang, L., Orchard, J.: Investigating the evolution of a neuroplasticity network for learning. IEEE Trans. Syst. Man Cybern. Syst. (2017). https://doi.org/10.1109/TSMC.2017.2755066
Wang, L., Yang, B., Chen, Y., Zhang, X., Orchard, J.: Improving neural-network classifiers using nearest neighbor partitioning. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2255–2267 (2017). https://doi.org/10.1109/TNNLS.2016.2580570
Wang, L., Yang, B., Orchard, J.: Particle swarm optimization using dynamic tournament topology. Appl. Soft Comput. 48, 584–596 (2016). https://doi.org/10.1016/j.asoc.2016.07.041
Wang, L., Yang, B., Wang, S., Liang, Z.: Building image feature kinetics for cement hydration using gene expression programming with similarity weight tournament selection. IEEE Trans. Evol. Comput. 19(5), 679–693 (2015). https://doi.org/10.1109/TEVC.2014.2367111
Xin, L., Chi, Z., Weimin, X., Peter, C.N.: Prefix gene expression programming. In: Late Breaking Paper at Genetic and Evolutionary Computation Conference, pp. 25–29 (2005)
Yin, J., Meng, Y., Jin, Y.: A developmental approach to structural self-organization in reservoir computing. IEEE Trans. Auton. Mental Dev. 4(4), 273–289 (2012). https://doi.org/10.1109/TAMD.2012.2182765
Zelinka, I., Oplatkova, Z., Nolle, L.: Analytic programming-symbolic regression by means of arbitrary evolutionary algorithms. Int. J. Simul. Syst. Sci. Technol. 6(9), 44–56 (2005)
Zhong, J., Feng, L., Ong, Y.S.: Gene expression programming: a survey. IEEE Comput. Intell. Mag. 12(3), 54–72 (2017). https://doi.org/10.1109/MCI.2017.2708618
Acknowledgments
This work was supported by National Natural Science Foundation of China under Grant No. 61573166, No. 61572230, No. 61872419, No. 61873324, No. 81671785, No. 61672262. Project of Shandong Province Higher Educational Science and Technology Program under Grant No. J16LN07. Shandong Provincial Natural Science Foundation No. ZR2019MF040, No. ZR2018LF005. Shandong Provincial Key R&D Program under Grant No. 2019GGX101041, No. 2018GGX101048, No. 2016ZDJS01A12, No. 2016GGX101001, No. 2017CXZC1206. Taishan Scholar Project of Shandong Province, China.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Anjum, A., Sun, F., Wang, L., Orchard, J. (2019). A Novel Neural Network-Based Symbolic Regression Method: Neuro-Encoded Expression Programming. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Deep Learning. ICANN 2019. Lecture Notes in Computer Science(), vol 11728. Springer, Cham. https://doi.org/10.1007/978-3-030-30484-3_31
Download citation
DOI: https://doi.org/10.1007/978-3-030-30484-3_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30483-6
Online ISBN: 978-3-030-30484-3
eBook Packages: Computer ScienceComputer Science (R0)