Abstract
Recent years have witnessed two seemingly opposite developments of deep convolutional neural networks (CNNs). On the one hand, increasing the density of CNNs (e.g., by adding cross-layer connections) achieves better performance on basic computer vision tasks. On the other hand, creating sparsity structures (e.g., through pruning methods) achieves a more slim network structure. Inspired by modularity structures in the human brain, we bridge these two trends by proposing a new network structure with internally dense yet externally sparse connections. Experimental results demonstrate that our new structure could obtain competitive performance on benchmark tasks (CIFAR10, CIFAR100, and ImageNet) while keeping the network structure slim.
Keywords
- Hierarchical CNN
- Evolutionary algorithms
- Neural network structure
This is a preview of subscription content, access via your institution.
Buying options







References
Angeline, P.J., Pollack, J.: Evolutionary module acquisition. In: Proceedings of the Second Annual Conference on Evolutionary Programming, pp. 154–163. Citeseer (1993). https://doi.org/10.1007/978-3-540-24650-3_17
Belliveau, J., et al.: Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254(5032), 716–719 (1991). https://doi.org/10.1126/science.1948051
Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Networks 5(2), 157–166 (1994). https://doi.org/10.1109/72.279181
Betzel, R.F., et al.: The modular organization of human anatomical brain networks: accounting for the cost of wiring. Netw. Neurosci. 1(1), 42–68 (2017). https://doi.org/10.1162/NETN_a_00002
Braun, H., Weisbrod, J.: Evolving neural feedforward networks. In: Albrecht, R.F., Reeves, C.R., Steele, N.C. (eds.) Artificial Neural Nets and Genetic Algorithms, pp. 25–32. Springer, Vienna (1993). https://doi.org/10.1007/978-3-7091-7533-0_5. https://doi.org/10.1109/72.80206
Chollet, F.: Xception: deep learning with depthwise separable convolutions. arXiv preprint, pp. 1610–02357 (2017). https://doi.org/10.1109/CVPR.2017.195
Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks: training deep neural networks with weights and activations constrained to +1 or \(-1\). arXiv preprint arXiv:1602.02830 (2016)
Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear structure within convolutional networks for efficient evaluation. In: Advances in Neural Information Processing Systems, pp. 1269–1277 (2014)
Gazzaniga, M.S.: Brain modularity: towards a philosophy of conscious experience (1988)
Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. arXiv preprint arXiv:1510.00149 (2015). https://doi.org/10.1145/2351676.2351678
Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural network. In: Advances in Neural Information Processing Systems, pp. 1135–1143 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90
He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38
He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In: International Conference on Computer Vision (ICCV), vol. 2, p. 6 (2017)
Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, p. 3 (2017). https://doi.org/10.1109/CVPR.2017.243
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
Kim, Y.D., Park, E., Yoo, S., Choi, T., Yang, L., Shin, D.: Compression of deep convolutional neural networks for fast and low power mobile applications. arXiv preprint arXiv:1511.06530 (2015)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012). https://doi.org/10.1145/3065386
Larsson, G., Maire, M., Shakhnarovich, G.: FractalNet: ultra-deep neural networks without residuals. arXiv preprint arXiv:1605.07648 (2016)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791
Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)
Mao, H., et al.: Exploring the regularity of sparse structure in convolutional neural networks. arXiv preprint arXiv:1705.08922 (2017)
Park, J., et al.: Faster CNNs with direct sparse convolutions and guided pruning. arXiv preprint arXiv:1608.01409 (2016)
Pujol, J.C.F., Poli, R.: Evolving the topology and the weights of neural networks using a dual representation. Appl. Intell. 8(1), 73–84 (1998). https://doi.org/10.1023/a:1008272615525
Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_32
Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. arXiv preprint arXiv:1802.01548 (2018)
Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Srinivas, M., Patnaik, L.M.: Genetic algorithms: a survey. Computer 27(6), 17–26 (1994). https://doi.org/10.1109/2.294849
Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway networks. arXiv preprint arXiv:1505.00387 (2015)
Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002). https://doi.org/10.1162/106365602320169811
Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. In: AAAI, vol. 4, p. 12 (2017)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016). https://doi.org/10.1109/CVPR.2016.308
Sztarker, J., Tomsic, D.: Brain modularity in arthropods: individual neurons that support “what” but not “where” memories. J. Neurosci. 31(22), 8175–8180 (2011). https://doi.org/10.1523/jneurosci.6029-10.2011
Wang, J., Wei, Z., Zhang, T., Zeng, W.: Deeply-fused nets. arXiv preprint arXiv:1605.07716 (2016)
Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep neural networks. In: Advances in Neural Information Processing Systems, pp. 2074–2082 (2016)
Xie, G., Wang, J., Zhang, T., Lai, J., Hong, R., Qi, G.J.: IGCV \(2\): interleaved structured sparse convolutional neural networks. arXiv preprint arXiv:1804.06202 (2018). https://doi.org/10.1109/CVPR.2018.00922
Xie, L., Yuille, A.: Genetic CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1379–1388 (2017)
Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint arXiv:1605.07146 (2016). https://doi.org/10.5244/C.30.87
Zhou, A., Yao, A., Guo, Y., Xu, L., Chen, Y.: Incremental network quantization: towards lossless CNNs with low-precision weights. arXiv preprint arXiv:1702.03044 (2017)
Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition (2017)
Acknowledgment
We thank the anonymous reviewers for their comments. This work was supported by Mitacs Accelerate Grant IT08175 with Two Hat Security Research Corporation. Part of this work has been prototyped in the CEASE.ai project at Two Hat Security.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Duan, Y., Feng, C. (2019). Learning Internal Dense But External Sparse Structures of Deep Convolutional Neural Network. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Deep Learning. ICANN 2019. Lecture Notes in Computer Science(), vol 11728. Springer, Cham. https://doi.org/10.1007/978-3-030-30484-3_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-30484-3_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30483-6
Online ISBN: 978-3-030-30484-3
eBook Packages: Computer ScienceComputer Science (R0)