Skip to main content

Automatic Augmentation by Hill Climbing

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11728))

Abstract

When learning from images, it is desirable to augment the dataset with plausible transformations of its images. Unfortunately, it is not always intuitive for the user how much shear or translation to apply. For this reason, training multiple models through hyperparameter search is required to find the best augmentation policies. But these methods are computationally expensive. Furthermore, since they generate static policies, they do not take advantage of smoothly introducing more aggressive augmentation transformations. In this work, we propose repeating each epoch twice with a small difference in data augmentation intensity, walking towards the best policy. This process doubles the number of epochs, but avoids having to train multiple models. The method is compared against random and Bayesian search for classification and segmentation tasks. The proposal improved twice over random search and was on par with Bayesian search for 4% of the training epochs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/keras-team/keras-preprocessing.

References

  1. Intel & MobileODT cervical cancer screening, Kaggle competition (2017). https://www.kaggle.com/c/intel-mobileodt-cervical-cancer-screening. Accessed 1 Dec 2018

  2. Retinal CHASE DB1 database (2017). https://blogs.kingston.ac.uk/retinal/chasedb1/. Accessed 1 Dec 2018

  3. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 41–48. ACM (2009). https://doi.org/10.1145/1553374.1553380

  4. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: Advances in Neural Information Processing Systems, pp. 2546–2554 (2011)

    Google Scholar 

  6. Cardoso, J.S., Cardoso, M.J.: Towards an intelligent medical system for the aesthetic evaluation of breast cancer conservative treatment. Artif. Intell. Med. 40(2), 115–126 (2007). https://doi.org/10.1016/j.artmed.2007.02.007

    Article  Google Scholar 

  7. Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 215–223 (2011)

    Google Scholar 

  8. Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), hosted by the International Skin Imaging Collaboration (ISIC). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI), pp. 168–172. IEEE (2018). https://doi.org/10.1109/ISBI.2018.8363547

  9. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: learning augmentation policies from data (2018). arXiv preprint: arXiv:1805.09501

  10. Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The PASCAL visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2015). https://doi.org/10.1007/s11263-014-0733-5

    Article  Google Scholar 

  11. Fernandes, K., Cardoso, J.S., Fernandes, J.: Transfer learning with partial observability applied to cervical cancer screening. In: Alexandre, L.A., Salvador Sánchez, J., Rodrigues, J.M.F. (eds.) IbPRIA 2017. LNCS, vol. 10255, pp. 243–250. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58838-4_27

    Chapter  Google Scholar 

  12. Fernandez, K., Chang, C.: Teeth/Palate and interdental segmentation using artificial neural networks. In: Mana, N., Schwenker, F., Trentin, E. (eds.) ANNPR 2012. LNCS (LNAI), vol. 7477, pp. 175–185. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33212-8_16

    Chapter  Google Scholar 

  13. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000)

    Article  Google Scholar 

  14. Jamieson, K., Talwalkar, A.: Non-stochastic best arm identification and hyperparameter optimization. In: Artificial Intelligence and Statistics, pp. 240–248 (2016)

    Google Scholar 

  15. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report, Citeseer (2009)

    Google Scholar 

  16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  17. Larsen, J., Hansen, L.K., Svarer, C., Ohlsson, M.: Design and regularization of neural networks: the optimal use of a validation set. In: Proceedings of the 1996 IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing VI, pp. 62–71. IEEE (1996)

    Google Scholar 

  18. LeCun, Y., Cortes, C., Burges, C.: MNIST handwritten digit database. AT&T Labs [Online]. http://yann.lecun.com/exdb/mnist 2 (2010). https://doi.org/10.1109/MSP.2012.2211477

    Article  Google Scholar 

  19. Mendonça, T., Ferreira, P.M., Marques, J.S., Marcal, A.R., Rozeira, J.: PH\(^{2}\)-a dermoscopic image database for research and benchmarking. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5437–5440. IEEE (2013). https://doi.org/10.1109/EMBC.2013.6610779

  20. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning, vol. 2011, p. 5 (2011)

    Google Scholar 

  21. Olson, R.S., Urbanowicz, R.J., Andrews, P.C., Lavender, N.A., Kidd, L.C., Moore, J.H.: Automating biomedical data science through tree-based pipeline optimization. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016, Part I. LNCS, vol. 9597, pp. 123–137. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31204-0_9

    Chapter  Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Sequeira, A.F., Monteiro, J.C., Rebelo, A., Oliveira, H.P.: MobBIO: a multimodal database captured with a portable handheld device. In: 2014 International Conference on Computer Vision Theory and Applications (VISAPP), vol. 3, pp. 133–139. IEEE (2014). https://doi.org/10.5220/0004679601330139

  24. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004). https://doi.org/10.1109/TMI.2004.825627

    Article  Google Scholar 

  25. Vasconcelos, M.J.M., Rosado, L., Ferreira, M.: Principal axes-based asymmetry assessment methodology for skin lesion image analysis. In: Bebis, G., et al. (eds.) ISVC 2014, Part II. LNCS, vol. 8888, pp. 21–31. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14364-4_3

    Chapter  Google Scholar 

  26. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms (2017). arXiv preprint: arXiv:1708.07747

Download references

Acknowledgments

This work is financed by National Funds through the Portuguese funding agency, FCT – Fundação para a Ciência e a Tecnologia within project: UID/EEA/50014/2019, and the PhD grant “SFRH/BD/122248/2016” from FCT supported by POCH and the EU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Cruz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cruz, R., Pinto Costa, J.F., Cardoso, J.S. (2019). Automatic Augmentation by Hill Climbing. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Deep Learning. ICANN 2019. Lecture Notes in Computer Science(), vol 11728. Springer, Cham. https://doi.org/10.1007/978-3-030-30484-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30484-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30483-6

  • Online ISBN: 978-3-030-30484-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics