Skip to main content

Rational Approximation of Fractional-Order System with Multiple Fractional Powered Terms - A Comparative Study

  • Conference paper
  • First Online:
Intelligent Computing, Information and Control Systems (ICICCS 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1039))

Abstract

Rational approximation of the infinite dimensional fractional-order system (FOS) is necessary for their practical implementations. In this paper, two well known continuous-time approximation methods, namely, Charef approximation method and Oustaloup approximation method have been individually applied on a fractional-order transfer function having multiple fractional powered terms to obtain two different integer order approximants of the same FOS. The frequency response and the time response resulted from both the approximation methods have been compared subsequently using simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  2. Chen, Y.Q., Petras, I., Xue, D.: Fractional-order control—a tutorial. In: Proceeding of the American Control Conference (ACC), pp. 1397–1411, IEEE, St. Louis (2009)

    Google Scholar 

  3. Vinagre, B.M., Podlubny, I., Hernandes, A., Feliu, V.: Some approximations of fractional-order operators used in control theory and applications. Fract. Calc. Appl. Anal. 3(3), 231–248 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Shrivastava, N., Varshney, P.: A new improved technique for frequency band implementation of fractional-order functions. Int. J. Math. Models Methods Appl. Sci. 12, 185–193 (2018)

    Google Scholar 

  5. Charef, A., Sun, H.H., Tsao, Y.Y., Onaral, B.: Fractal system as represented by singularity function. IEEE Trans. Autom. Control 37(9), 1465–1470 (1992)

    Article  MathSciNet  Google Scholar 

  6. Ladaci, S., Charef, A.: On fractional adaptive control. Nonlinear Dyn. 43(4), 365–378 (2006)

    Article  MathSciNet  Google Scholar 

  7. Charef, A.: Analogue realisation of fractional-order integrator, differentiator and fractional \( PI^{\lambda } D^{\mu } \) controller. In: IEE Proceeding-Control Theory Applications 153(6), 714–720 (2006)

    Google Scholar 

  8. Mansauria, R., Bettayeb, M., Djennoune, S.: Approximation of high order integer systems by fractional-order reduced-parameters models. Math. Comput. Model. 51(1–2), 53–62 (2010)

    Article  MathSciNet  Google Scholar 

  9. Meg, L., Xue, D.: An Approximation algorithm of fractional-order pole models based on an optimization process. In: Proceedings of 2010 IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications, Shenyang, pp. 486–491 (2010)

    Google Scholar 

  10. Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.M.: Frequency-band complex non-integer differentiator: characterization and synthesis. IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 47(1), 25–39 (2000)

    Article  Google Scholar 

  11. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu, V.: Fractional-Order Systems and Controls. Springer, London (2010)

    Book  Google Scholar 

  12. Baranowski, J., Bauer, W., Zagorowska, M., Dziwinski, T., Piatek, P.: Time-domain oustaloup approximation. In: 20th Internatonal Conference on Methods and Models in Automation and Robotics (MMAR), pp. 116–120. IEEE (2015)

    Google Scholar 

  13. Swarnakar, J., Sarkar, P., Singh, L.J.: Realization of fractional-order operator in complex domains—a comparative study. In: Bera, R., Sarkar, S., Chakraborty, S. (eds.) Lecture Notes in Electrical Engineering, vol. 462, pp. 711–718. Springer, Singapore (2018)

    Chapter  Google Scholar 

  14. Swarnakar, J., Sarkar, P., Singh, L.J.: Rational approximation methods for a class of fractional-order SISO system in delta domain. In: Bera, R., Sarkar, S. K., Singh, O.P., Saikia, H. (eds.) Lecture Notes in Electrical Engineering, vol. 537, pp. 395–402. Springer, Singapore (2019)

    Chapter  Google Scholar 

  15. Senol, B., Yeroglu, C.: Filter approximation and model reduction comparison for fractional-order systems. In: International Conference on Fractional Differentiation and its Applications (ICFDA), pp. 1–6. IEEE (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaydeep Swarnakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Swarnakar, J., Sungoh, W. (2020). Rational Approximation of Fractional-Order System with Multiple Fractional Powered Terms - A Comparative Study. In: Pandian, A., Ntalianis, K., Palanisamy, R. (eds) Intelligent Computing, Information and Control Systems. ICICCS 2019. Advances in Intelligent Systems and Computing, vol 1039. Springer, Cham. https://doi.org/10.1007/978-3-030-30465-2_4

Download citation

Publish with us

Policies and ethics