Schmidhuber, J.: Learning to generate sub-goals for action sequences. In: Kohonen, T., Mäkisara, K., Simula, O., Kangas, J. (eds.) Artificial Neural Networks, pp. 967–972. Elsevier Science Publishers B.V., North-Holland (1991)
Google Scholar
Konidaris, G.D., Barto, A.G.: Skill discovery in continuous reinforcement learning domains using skill chaining. Adv. Neural. Inf. Process. Syst. 22, 1015–1023 (2009)
Google Scholar
Bacon, P.-L., Harb, J., Precup, D.: The option-critic architecture. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, pp. 1726–1734 (2017)
Google Scholar
Vezhnevets, A., Osindero, S., Schaul, T., Heess, N., Jaderberg, M., Silver, D., Kavukcuoglu, K.: FeUdal networks for hierarchical reinforcement learning. In: Proceedings of the 34th International Conference on Machine Learning, pp. 3540–3549 (2017)
Google Scholar
Nachum, O., Gu, S., Lee, H., Levine, S.: Data-efficient hierarchical reinforcement learning. Adv. Neural. Inf. Process. Syst. 31, 3303–3313 (2018)
Google Scholar
Levy, A., Konidaris, G., Platt, R., Saenko, K.: Learning multi-level hierarchies with hindsight. arXiv:1712.00948. [cs.AI], March 2019
Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B., Tobin, J., Abbeel, P., Zaremba, W.: Hindsight experience replay. Adv. Neural. Inf. Process. Syst. 30, 5048–5058 (2017)
Google Scholar
Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.: Continuous control with deep reinforcement learning. CoRR (2015). arXiv:1509.02971
Silver, D., Schaul, T., Horgan, D., Gregor, K.: Universal value function approximators. In: International Conference on Machine Learning (July 2015)
Google Scholar
Shikunov, M., Panov, A.I.: Hierarchical reinforcement learning approach for the road intersection task. In: Samsonovich, A.V. (ed.) Biologically Inspired Cognitive Architectures 2019. Springer, Cham (2019)
Google Scholar
Kuzmin, V., Panov, A.I.: Hierarchical reinforcement learning with options and united neural network approximation. In: Abraham, A., Kovalev, S., Tarassov, V., Snasel, V., Sukhanov, A. (eds.) Proceedings of the Third International Scientific Conference “Intelligent Information Technologies for Industry” (IITI 2018), pp. 453–462. Springer, Cham (2018)
Google Scholar
Ayunts, E., Panov, A.I.: Task planning in “Block World” with deep reinforcement learning. In: Samsonovich, A.V., Klimov, V.V. (eds.) Biologically Inspired Cognitive Architectures (BICA) for Young Scientists, pp. 3–9. Springer, Cham (2017)
Google Scholar