Skip to main content

Degenerative Night-Blinding Disorders and Cone and Cone–Rod Dystrophies

  • Chapter
  • First Online:
Handbook of Clinical Electrophysiology of Vision

Abstract

This chapter summarizes the application of electrophysiologic tests in retinitis pigmentosa, Leber's congenital amaurosis, enhanced S-Cone syndrome, choroideremia, gyrate atrophy of choroid and retina, late onset retinal degeneration, Bietti’s crystalline dystrophy, cone dystrophies, and cone-rod dystrophies. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iannaccone A, Berdia J. Retinitis pigmentosa. 2017. Review No. 21. Danbury, CT:National Organization for Rare Disorders, Inc.; www.rarediseases.org

  2. RetNet – Retinal Information Network., https://sph.uth.edu/retnet/home.htm. 2019.

  3. Nagy D, et al. Long-term follow-up of retinitis pigmentosa patients with multifocal electroretinography. Invest Ophthalmol Vis Sci. 2008;49(10):4664–71.

    Article  PubMed  Google Scholar 

  4. Walia S, et al. Visual acuity in patients with Leber’s congenital amaurosis and early childhood-onset retinitis pigmentosa. Ophthalmology. 2010;117(6):1190–8.

    Article  PubMed  Google Scholar 

  5. den Hollander AI, et al. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res. 2008;27(4):391–419.

    Article  CAS  Google Scholar 

  6. Stone EM. Leber congenital amaurosis – a model for efficient genetic testing of heterogeneous disorders: LXIV Edward Jackson Memorial Lecture. Am J Ophthalmol. 2007;144(6):791–811.

    Article  CAS  PubMed  Google Scholar 

  7. Pennesi ME, et al. Residual electroretinograms in young Leber congenital amaurosis patients with mutations of AIPL1. Invest Ophthalmol Vis Sci. 2011;52(11):8166–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Occelli LM, et al. CrxRdy cat: a large animal model for CRX-associated Leber congenital Amaurosis. Invest Ophthalmol Vis Sci. 2016;57(8):3780–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chang B. Mouse models as tools to identify genetic pathways for retinal degeneration, as exemplified by Leber’s congenital Amaurosis. Methods Mol Biol. 2016;1438:417–30.

    Article  CAS  PubMed  Google Scholar 

  10. Khan AO, et al. Peripherin mutations cause a distinct form of recessive Leber congenital amaurosis and dominant phenotypes in asymptomatic parents heterozygous for the mutation. Br J Ophthalmol. 2016;100(2):209–15.

    Article  PubMed  Google Scholar 

  11. Kuniyoshi K, et al. Longitudinal clinical course of three Japanese patients with Leber congenital amaurosis/early-onset retinal dystrophy with RDH12 mutation. Doc Ophthalmol. 2014;128(3):219–28.

    Article  PubMed  Google Scholar 

  12. Iannaccone A, et al. Treatment of adult-onset acute macular retinoschisis in enhanced S-cone syndrome with oral acetazolamide. Am J Ophthalmol. 2009;147:307–12.

    Article  CAS  PubMed  Google Scholar 

  13. Sharon D, et al. Shared mutations in NR2E3 in enhanced S-cone syndrome, Goldmann-Favre syndrome, and many cases of clumped pigmentary retinal degeneration. Arch Ophthalmol. 2003;121(9):1316–23.

    Article  CAS  PubMed  Google Scholar 

  14. Milam AH, et al. The nuclear receptor NR2E3 plays a role in human retinal photoreceptor differentiation and degeneration. Proc Natl Acad Sci U S A. 2002;99(1):473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haider NB, et al. Mutation of a nuclear receptor gene, NR2E3, causes enhanced S cone syndrome, a disorder of retinal cell fate. Nat Genet. 2000;24(2):127–31.

    Article  CAS  PubMed  Google Scholar 

  16. Hood DC, et al. Enhanced S cone syndrome: evidence for an abnormally large number of S cones. Vision Res. 1995;35(10):1473–81.

    Article  CAS  PubMed  Google Scholar 

  17. Haider NB, Naggert JK, Nishina PM. Excess cone cell proliferation due to lack of a functional NR2E3 causes retinal dysplasia and degeneration in rd7/rd7 mice. Hum Mol Genet. 2001;10(16):1619–26.

    Article  CAS  PubMed  Google Scholar 

  18. Pachydaki SI, et al. Long-term follow-up in enhanced s-cone syndrome. Retin Cases Brief Rep. 2009;3(2):118–20.

    Article  PubMed  Google Scholar 

  19. Genead MA, Fishman GA, McAnany JJ. Efficacy of topical dorzolamide for treatment of cystic macular lesions in a patient with enhanced S-cone syndrome. Doc Ophthalmol. 2010;121(3):231–40.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kiszkielis M, Lubinski W, Penkala K. Topical dorzolamide treatment of macular cysts in the enhanced S-cone syndrome patient. Doc Ophthalmol. 2013;126(3):241–6.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Marmor MF, et al. Diagnostic clinical findings of a new syndrome with night blindness, maculopathy, and enhanced S cone sensitivity. Am J Ophthalmol. 1990;110(2):124–34.

    Article  CAS  PubMed  Google Scholar 

  22. Jacobson SG, et al. SWS (blue) cone hypersensitivity in a newly identified retinal degeneration. Invest Ophthalmol Vis Sci. 1990;31(5):827–38.

    CAS  PubMed  Google Scholar 

  23. Kuniyoshi K, et al. New truncation mutation of the NR2E3 gene in a Japanese patient with enhanced S-cone syndrome. Jpn J Ophthalmol. 2016;60(6):476–85.

    Article  CAS  PubMed  Google Scholar 

  24. Kuniyoshi K, et al. Novel mutations in enhanced S-cone syndrome. Ophthalmology. 2013;120(2):431 e1–6.

    Article  Google Scholar 

  25. Audo I, et al. Phenotypic variation in enhanced S-cone syndrome. Invest Ophthalmol Vis Sci. 2008;49(5):2082–93.

    Article  PubMed  Google Scholar 

  26. Seabra MC, et al. Purification of component A of Rab geranylgeranyl transferase: possible identity with the choroideremia gene product. Cell. 1992;70(6):1049–57.

    Article  CAS  PubMed  Google Scholar 

  27. van den Hurk JA, et al. Molecular basis of choroideremia (CHM): mutations involving the Rab escort protein-1 (REP-1) gene. Hum Mutat. 1997;9(2):110–7.

    Article  PubMed  Google Scholar 

  28. Pfeffer SR. Rab GTPases: master regulators of membrane trafficking. Curr Opin Cell Biol. 1994;6(4):522–6.

    Article  CAS  PubMed  Google Scholar 

  29. Sanchez-Alcudia R, et al. A comprehensive analysis of choroideremia: from genetic characterization to clinical practice. PLoS One. 2016;11(4):e0151943.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ben Charfeddine I, et al. Genetic study in a tunisian family revealed IVS1+1G>A mutation in the CHM gene. Ann Biol Clin (Paris). 2015;73(4):469–73.

    CAS  Google Scholar 

  31. Contestabile MT, et al. Clinical and genetic studies in a family with a new splice-site mutation in the choroideremia gene. Mol Vis. 2014;20:325–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mura M, et al. Clinical and functional findings in choroideremia due to complete deletion of the CHM gene. Arch Ophthalmol. 2007;125(8):1107–13.

    Article  CAS  PubMed  Google Scholar 

  33. Sergeev YV, et al. The functional effect of pathogenic mutations in Rab escort protein 1. Mutat Res. 2009;665(1–2):44–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Roberts MF, et al. Retrospective, longitudinal, and cross sectional study of visual acuity impairment in choroideraemia. Br J Ophthalmol. 2002;86(6):658–62.

    Article  PubMed  PubMed Central  Google Scholar 

  35. MacDonald IM, et al. Choroideremia. Gene Reviews 2008 May 28, 2008 April 15, 2009]. Available from: http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=choroid#choroid.grID19666.

  36. Fulton AB, Hansen RM. The relation of rhodopsin and scotopic sensitivity in choroideremia. Am J Ophthalmol. 1987;104(5):524–32.

    Article  CAS  PubMed  Google Scholar 

  37. MacDonald IM, et al. Histopathology of the retinal pigment epithelium of a female carrier of choroideremia. Can J Ophthalmol. 1997;32(5):329–33.

    CAS  PubMed  Google Scholar 

  38. Perez-Cano HJ, Garnica-Hayashi RE, Zenteno JC. CHM gene molecular analysis and X-chromosome inactivation pattern determination in two families with choroideremia. Am J Med Genet A. 2009;149A(10):2134–40.

    Article  PubMed  Google Scholar 

  39. Ponjavic V, et al. Phenotype variations within a choroideremia family lacking the entire CHM gene. Ophthalmic Genet. 1995;16(4):143–50.

    Article  CAS  PubMed  Google Scholar 

  40. Renner AB, et al. Choroideremia: variability of clinical and electrophysiological characteristics and first report of a negative electroretinogram. Ophthalmology. 2006;113(11):2066 e1–10.

    Article  Google Scholar 

  41. Chen MS, et al. Blood-aqueous barrier function in a patient with choroideremia. J Formos Med Assoc. 2010;109(2):167–71.

    Article  PubMed  Google Scholar 

  42. Renner AB, et al. Progression of retinal pigment epithelial alterations during long-term follow-up in female carriers of choroideremia and report of a novel CHM mutation. Arch Ophthalmol. 2009;127(7):907–12.

    Article  CAS  PubMed  Google Scholar 

  43. Iino Y, et al. A novel mutation (967-970+2)delAAAGGT in the choroideremia gene found in a Japanese family and related clinical findings. Jpn J Ophthalmol. 2008;52(4):289–97.

    Article  CAS  PubMed  Google Scholar 

  44. Sieving PA, Niffenegger JH, Berson EL. Electroretinographic findings in selected pedigrees with choroideremia. Am J Ophthalmol. 1986;101(3):361–7.

    Article  CAS  PubMed  Google Scholar 

  45. Yau RJ, et al. Choroideremia carriers maintain a normal electro-oculogram (EOG). Doc Ophthalmol. 2007;114(3):147–51.

    Article  PubMed  Google Scholar 

  46. Vajaranant TS, et al. Detection of mosaic retinal dysfunction in choroideremia carriers electroretinographic and psychophysical testing. Ophthalmology. 2008;115(4):723–9.

    Article  PubMed  Google Scholar 

  47. Preising MN, et al. Fundus autofluorescence in carriers of choroideremia and correlation with electrophysiologic and psychophysical data. Ophthalmology. 2009;116(6):1201–9 e1-2.

    Article  PubMed  Google Scholar 

  48. Cheung MC, et al. Detection of localized retinal dysfunction in a choroideremia carrier. Am J Ophthalmol. 2004;137(1):189–91.

    Article  PubMed  Google Scholar 

  49. Wu J, et al. The ornithine aminotransferase (OAT) locus is linked and distal to D10S20 on the long arm of chromosome 10. Cytogenet Cell Genet. 1988;48(2):126–7.

    Article  CAS  PubMed  Google Scholar 

  50. Hayden MR, et al. A polymorphic DNA marker that represents a conserved expressed sequence in the region of the Huntington disease gene. Am J Hum Genet. 1988;42(1):125–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mitchell GA, et al. Human ornithine-delta-aminotransferase. cDNA cloning and analysis of the structural gene. J Biol Chem. 1988;263(28):14288–95.

    Article  CAS  PubMed  Google Scholar 

  52. Rao GN, Cotlier E. Ornithine delta-aminotransferase activity in retina and other tissues. Neurochem Res. 1984;9(4):555–62.

    Article  CAS  PubMed  Google Scholar 

  53. Ratzlaff K, Baich A. Comparison of ornithine aminotransferase activities in the pigment epithelium and retina of vertebrates. Comp Biochem Physiol B. 1987;88(1):35–7.

    Article  CAS  PubMed  Google Scholar 

  54. Takki K. Gyrate atrophy of the choroid and retina associated with hyperornithinaemia. Br J Ophthalmol. 1974;58(1):3–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Takki K, Simell O. Genetic aspects in gyrate atrophy of the choroid and retina with hyperornithinaemia. Br J Ophthalmol. 1974;58(11):907–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Simell O, Takki K. Raised plasma-ornithine and gyrate atrophy of the choroid and retina. Lancet. 1973;1(7811):1031–3.

    Article  CAS  PubMed  Google Scholar 

  57. Kaiser-Kupfer MI, Caruso RC, Valle D. Gyrate atrophy of the choroid and retina: further experience with long-term reduction of ornithine levels in children. Arch Ophthalmol. 2002;120(2):146–53.

    Article  PubMed  Google Scholar 

  58. Feldman RB, et al. Epiretinal membranes and cystoid macular edema in gyrate atrophy of the choroid and retina. Retina. 1989;9(2):139–42.

    Article  CAS  PubMed  Google Scholar 

  59. Takki KK, Milton RC. The natural history of gyrate atrophy of the choroid and retina. Ophthalmology. 1981;88(4):292–301.

    Article  CAS  PubMed  Google Scholar 

  60. Renner AB, et al. Gyrate atrophy: clinical and genetic findings in a female without arginine-restricted diet during her first 39 years of life and report of a new OAT gene mutation. Doc Ophthalmol. 2012;125(1):81–9.

    Article  PubMed  Google Scholar 

  61. Peltola KE, et al. Ophthalmologic heterogeneity in subjects with gyrate atrophy of choroid and retina harboring the L402P mutation of ornithine aminotransferase. Ophthalmology. 2001;108(4):721–9.

    Article  CAS  PubMed  Google Scholar 

  62. Braham IZ, et al. Multimodal imaging of foveoschisis and macular pseudohole associated with gyrate atrophy: a family report. BMC Ophthalmol. 2018;18(1):89.

    Article  Google Scholar 

  63. Katagiri S, et al. OAT mutations and clinical features in two Japanese brothers with gyrate atrophy of the choroid and retina. Doc Ophthalmol. 2014;128(2):137–48.

    Article  PubMed  Google Scholar 

  64. Mehta MC, et al. Gyrate atrophy of the choroid and retina in a 5-year-old girl. Acta Ophthalmol. 1991;69(6):810–4.

    Article  CAS  Google Scholar 

  65. Raitta C, Carlson S, Vannas-Sulonen K. Gyrate atrophy of the choroid and retina: ERG of the neural retina and the pigment epithelium. Br J Ophthalmol. 1990;74(6):363–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hayward C, et al. Mutation in a short-chain collagen gene, CTRP5, results in extracellular deposit formation in late-onset retinal degeneration: a genetic model for age-related macular degeneration. Hum Mol Genet. 2003;12(20):2657–67.

    Article  CAS  PubMed  Google Scholar 

  67. Kuntz CA, et al. Sub-retinal pigment epithelial deposits in a dominant late-onset retinal degeneration. Invest Ophthalmol Vis Sci. 1996;37(9):1772–82.

    CAS  PubMed  Google Scholar 

  68. Milam AH, et al. Dominant late-onset retinal degeneration with regional variation of sub-retinal pigment epithelium deposits, retinal function, and photoreceptor degeneration. Ophthalmology. 2000;107(12):2256–66.

    Article  CAS  PubMed  Google Scholar 

  69. Jacobson SG, et al. Phenotypic marker for early disease detection in dominant late-onset retinal degeneration. Invest Ophthalmol Vis Sci. 2001;42(8):1882–90.

    CAS  PubMed  Google Scholar 

  70. Duvall J, et al. Extensive subretinal pigment epithelial deposit in two brothers suffering from dominant retinitis pigmentosa. A histopathological study. Graefes Arch Clin Exp Ophthalmol. 1986;224(3):299–309.

    Article  CAS  PubMed  Google Scholar 

  71. Papastavrou VT, et al. Improvement of retinal function in L-ORD after prolonged dark adaptation. Can J Ophthalmol. 2015;50(2):112–8.

    Article  PubMed  Google Scholar 

  72. Soumplis V, et al. Phenotypic findings in C1QTNF5 retinopathy (late-onset retinal degeneration). Acta Ophthalmol. 2013;91(3):e191–5.

    Article  CAS  PubMed  Google Scholar 

  73. Vincent A, et al. The characterization of retinal phenotype in a family with C1QTNF5-related late-onset retinal degeneration. Retina. 2012;32(8):1643–51.

    Article  PubMed  Google Scholar 

  74. Jiao X, et al. Identification and population history of CYP4V2 mutations in patients with Bietti crystalline corneoretinal dystrophy. Eur J Hum Genet. 2017;25(4):461–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li A, et al. Bietti crystalline corneoretinal dystrophy is caused by mutations in the novel gene CYP4V2. Am J Hum Genet. 2004;74(5):817–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ng DS, et al. Genetics of Bietti crystalline dystrophy. Asia Pac J Ophthalmol (Phila). 2016;5(4):245–52.

    Article  CAS  Google Scholar 

  77. Lee J, et al. The metabolism of fatty acids in human Bietti crystalline dystrophy. Invest Ophthalmol Vis Sci. 2001;42(8):1707–14.

    CAS  PubMed  Google Scholar 

  78. Lee J, et al. Identification, isolation, and characterization of a 32-kDa fatty acid-binding protein missing from lymphocytes in humans with Bietti crystalline dystrophy (BCD). Mol Genet Metab. 1998;65(2):143–54.

    Article  CAS  PubMed  Google Scholar 

  79. Lai TY, et al. Genotype phenotype analysis of Bietti’s crystalline dystrophy in patients with CYP4V2 mutations. Invest Ophthalmol Vis Sci. 2007;48(11):5212–20.

    Article  PubMed  Google Scholar 

  80. Bernauer W, Daicker B. Bietti’s corneal-retinal dystrophy. A 16-year progression. Retina. 1992;12(1):18–20.

    Article  CAS  PubMed  Google Scholar 

  81. Vargas M, et al. Bietti crystalline dystrophy. In: Adam MP, et al., editors. GeneReviews (R). University of Washington, Seattle; 1993.

    Google Scholar 

  82. Fuerst NM, et al. Detailed functional and structural phenotype of Bietti crystalline dystrophy associated with mutations in CYP4V2 complicated by choroidal neovascularization. Ophthalmic Genet. 2016;37(4):445–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Akincioglu D, et al. Objective determination of retinal function in Bietti crystalline retinopathy. Turk J Ophthalmol. 2016;46(3):144–7.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Raoof N, Vincent AL. Novel gene mutation in a patient with Bietti crystalline dystrophy without corneal deposits. Clin Exp Ophthalmol. 2017;45(4):421–4.

    Article  PubMed  Google Scholar 

  85. Halford S, et al. Detailed phenotypic and genotypic characterization of bietti crystalline dystrophy. Ophthalmology. 2014;121(6):1174–84.

    Article  PubMed  Google Scholar 

  86. Rossi S, et al. Clinical and genetic features in Italian Bietti crystalline dystrophy patients. Br J Ophthalmol. 2013;97(2):174–9.

    Article  PubMed  Google Scholar 

  87. Manzouri B, et al. Bietti crystalline retinopathy: report of retinal crystal deposition in male adolescent siblings. Arch Ophthalmol. 2012;130(11):1470–3.

    Article  PubMed  Google Scholar 

  88. Okialda KA, et al. Bietti crystalline dystrophy. In: Pagon RA, et al., editors. GeneReviews(R). University of Washington, Seattle; 1993.

    Google Scholar 

  89. Parravano M, et al. Bietti crystalline dystrophy: a morpho-functional evaluation. Doc Ophthalmol. 2012;124(1):73–7.

    Article  PubMed  Google Scholar 

  90. Liu DN, et al. The characterization of functional disturbances in Chinese patients with Bietti’s crystalline dystrophy at different fundus stages. Graefes Arch Clin Exp Ophthalmol. 2012;250(2):191–200.

    Article  PubMed  Google Scholar 

  91. Padhi TR, Kesarwani S, Jalali S. Bietti crystalline retinal dystrophy with subfoveal neurosensory detachment and congenital tortuosity of retinal vessels: case report. Doc Ophthalmol. 2011;122(3):199–206.

    Article  PubMed  Google Scholar 

  92. Sen P, Ray R, Ravi P. Electrophysiological findings in Bietti’s crystalline dystrophy. Clin Exp Optom. 2011;94(3):302–8.

    Article  PubMed  Google Scholar 

  93. Rossi S, et al. An atypical form of Bietti crystalline dystrophy. Ophthalmic Genet. 2011;32(2):118–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mansour AM, Uwaydat SH, Chan CC. Long-term follow-up in Bietti crystalline dystrophy. Eur J Ophthalmol. 2007;17(4):680–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gekka T, et al. CYP4V2 mutations in two Japanese patients with Bietti’s crystalline dystrophy. Ophthalmic Res. 2005;37(5):262–9.

    Article  PubMed  Google Scholar 

  96. Lockhart CM, et al. Longitudinal characterisation of function and structure of Bietti crystalline dystrophy: report on a novel homozygous mutation in CYP4V2. Br J Ophthalmol. 2018;102:187.

    Article  PubMed  Google Scholar 

  97. Tabatabaei A, et al. A case of Bietti crystalline dystrophy with preserved visual acuity and extinguished electroretinogram: a case report. Cases J. 2009;2:7100.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Simunovic MP, Moore AT. The cone dystrophies. Eye (Lond). 1998;12 (Pt 3b):553–65.

    Article  PubMed  Google Scholar 

  99. Michaelides M, Hunt DM, Moore AT. The cone dysfunction syndromes. Br J Ophthalmol. 2004;88(2):291–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Michaelides M, et al. Progressive cone and cone-rod dystrophies: phenotypes and underlying molecular genetic basis. Surv Ophthalmol. 2006;51(3):232–58.

    Article  PubMed  Google Scholar 

  101. Aleman TS, et al. Spinocerebellar ataxia type 7 (SCA7) shows a cone-rod dystrophy phenotype. Exp Eye Res. 2002;74(6):737–45.

    Article  CAS  PubMed  Google Scholar 

  102. Birtel J, et al. Clinical and genetic characteristics of 251 consecutive patients with macular and cone/cone-rod dystrophy. Sci Rep. 2018;8(1):4824.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Fishman GA, et al. ABCA4 gene sequence variations in patients with autosomal recessive cone-rod dystrophy. Arch Ophthalmol. 2003;121(6):851–5.

    Article  CAS  PubMed  Google Scholar 

  104. Birch DG, et al. Visual function in patients with cone-rod dystrophy (CRD) associated with mutations in the ABCA4(ABCR) gene. Exp Eye Res. 2001;73(6):877–86.

    Article  CAS  PubMed  Google Scholar 

  105. Demirci FY, et al. X-linked cone-rod dystrophy (locus COD1): identification of mutations in RPGR exon ORF15. Am J Hum Genet. 2002;70:1049–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Robson AG, et al. Functional correlates of fundus autofluorescence abnormalities in patients with RPGR or RIMS1 mutations causing cone or cone rod dystrophy. Br J Ophthalmol. 2008;92(1):95–102.

    Article  CAS  PubMed  Google Scholar 

  107. Branham K, et al. Mutations in RPGR and RP2 account for 15% of males with simplex retinal degenerative disease. Invest Ophthalmol Vis Sci. 2012;53(13):8232–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sakuramoto H, et al. Two siblings with late-onset cone-rod dystrophy and no visible macular degeneration. Clin Ophthalmol. 2013;7:1703–11.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Malm E, et al. Full-field electroretinography and marked variability in clinical phenotype of Alstrom syndrome. Arch Ophthalmol. 2008;126(1):51–7.

    Article  PubMed  Google Scholar 

  110. Marshall JD, et al. Alstrom syndrome. Eur J Hum Genet. 2007;15(12):1193–202.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minzhong Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kheir, W.J. et al. (2019). Degenerative Night-Blinding Disorders and Cone and Cone–Rod Dystrophies. In: Yu, M., Creel, D., Iannaccone, A. (eds) Handbook of Clinical Electrophysiology of Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-30417-1_6

Download citation

Publish with us

Policies and ethics