Skip to main content

Macular Dystrophies

  • Chapter
  • First Online:
Handbook of Clinical Electrophysiology of Vision

Abstract

This chapter summarizes the application of electroretinogram and/or electrooculogram in patients with Stargardt’s disease, fundus flavimaculatus, X-linked retinoschisis, vitelliform macular dystrophy (Best’s disease), pattern dystrophies, macular pattern dystrophy, Doyne’s honeycomb macular dystrophy, occult macular dystrophy, and North Carolina macular dystrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bax NM. The portal for rare diseases and orphan drugs. Orphanet: About Orphan Drugs. 2019. Available from: www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=GB&Expert=827 http://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=GB&Expert=827.

  2. Allikmets R, et al. Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science. 1997;277(5333):1805–7.

    CAS  PubMed  Google Scholar 

  3. Michaelides M, Hunt DM, Moore AT. The genetics of inherited macular dystrophies. J Med Genet. 2003;40(9):641–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Boon CJ, et al. Mutations in the peripherin/RDS gene are an important cause of multifocal pattern dystrophy simulating STGD1/fundus flavimaculatus. Br J Ophthalmol. 2007;91(11):1504–11.

    PubMed  PubMed Central  Google Scholar 

  5. Cideciyan AV, et al. Mutations in ABCA4 result in accumulation of lipofuscin before slowing of the retinoid cycle: a reappraisal of the human disease sequence. Hum Mol Genet. 2004;13(5):525–34.

    CAS  PubMed  Google Scholar 

  6. Fishman GA, et al. Variation of clinical expression in patients with Stargardt dystrophy and sequence variations in the ABCR gene. Arch Ophthalmol. 1999;117(4):504–10.

    CAS  PubMed  Google Scholar 

  7. Kuniyoshi K, et al. Multifocal electroretinograms in Stargardt’s disease/fundus flavimaculatus. Ophthalmologica. 2014;232(2):118–25.

    PubMed  Google Scholar 

  8. Haas J. Ueber das zusammenvorkommen von Veranderungen der retina und choroidea. Arch Augenheilkd. 1898;37:343–8.

    Google Scholar 

  9. George ND, Yates JR, Moore AT. X linked retinoschisis. Br J Ophthalmol. 1995;79(7):697–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu WW, Molday RS. Defective discoidin domain structure, subunit assembly, and endoplasmic reticulum processing of retinoschisin are primary mechanisms responsible for X-linked retinoschisis. J Biol Chem. 2003;278(30):28139–46.

    CAS  PubMed  Google Scholar 

  11. Sieving PA, Yashar BM, Ayyagari R. Juvenile retinoschisis: a model for molecular diagnostic testing of X-linked ophthalmic disease. Trans Am Ophthalmol Soc. 1999;97:451–64; discussion 464–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Cukras CA, et al. Analysis of anatomic and functional measures in X-linked retinoschisis. Invest Ophthalmol Vis Sci. 2018;59(7):2841–7.

    PubMed  PubMed Central  Google Scholar 

  13. Sieving PA, MacDonald IM, Chan S. X-linked juvenile retinoschisis. In: Adam MP, et al., editors. GeneReviews(R). University of Washington, Seattle; 2014.

    Google Scholar 

  14. Iannaccone A. Optical coherence tomography in rare pediatric cases. Retina Today. 2012(September). pp. 1–3.

    Google Scholar 

  15. Iannaccone A, et al. An unusual X-linked retinoschisis phenotype and biochemical characterization of the W112C RS1 mutation. Vision Res. 2006;46(22):3845–52.

    CAS  PubMed  Google Scholar 

  16. Ghajarnia M, Gorin MB. Acetazolamide in the treatment of X-linked retinoschisis maculopathy. Arch Ophthalmol. 2007;125(4):571–3.

    PubMed  Google Scholar 

  17. Miyake Y, et al. Focal macular electroretinogram in X-linked congenital retinoschisis. Invest Ophthalmol Vis Sci. 1993;34(3):512–5.

    CAS  PubMed  Google Scholar 

  18. Kim LS, et al. Multifocal ERG findings in carriers of X-linked retinoschisis. Doc Ophthalmol. 2007;114(1):21–6.

    PubMed  Google Scholar 

  19. Huang S, et al. The multifocal electroretinogram in X-linked juvenile retinoschisis. Doc Ophthalmol. 2003;106(3):251–5.

    PubMed  Google Scholar 

  20. White K, Marquardt A, Weber BH. VMD2 mutations in vitelliform macular dystrophy (Best disease) and other maculopathies. Hum Mutat. 2000;15(4):301–8.

    CAS  PubMed  Google Scholar 

  21. Marchant D, et al. New VMD2 gene mutations identified in patients affected by Best vitelliform macular dystrophy. J Med Genet. 2007;44(3):e70.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Boon CJ, et al. The spectrum of ocular phenotypes caused by mutations in the BEST1 gene. Prog Retin Eye Res. 2009;28(3):187–205.

    CAS  PubMed  Google Scholar 

  23. Iannaccone A, et al. Autosomal recessive best vitelliform macular dystrophy: report of a family and management of early-onset neovascular complications. Arch Ophthalmol. 2011;129(2):211–7.

    PubMed  Google Scholar 

  24. Burgess R, et al. Biallelic mutation of BEST1 causes a distinct retinopathy in humans. Am J Hum Genet. 2008;82(1):19–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Boon CJ, et al. Autosomal recessive bestrophinopathy: differential diagnosis and treatment options. Ophthalmology. 2013;120(4):809–20.

    PubMed  Google Scholar 

  26. Davidson AE, et al. Missense mutations in a retinal pigment epithelium protein, bestrophin-1, cause retinitis pigmentosa. Am J Hum Genet. 2009;85(5):581–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Renner AB, et al. Late onset is common in best macular dystrophy associated with VMD2 gene mutations. Ophthalmology. 2005;112(4):586–92.

    PubMed  Google Scholar 

  28. Kaufman SJ, et al. Autosomal dominant vitreoretinochoroidopathy. Arch Ophthalmol. 1982;100(2):272–8.

    CAS  PubMed  Google Scholar 

  29. Blair NP, et al. Autosomal dominant vitreoretinochoroidopathy (ADVIRC). Br J Ophthalmol. 1984;68(1):2–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Goldberg MF, et al. Ocular histopathology and immunohistochemical analysis in the oldest known individual with autosomal dominant vitreoretinochoroidopathy. Ophthalmol Retina. 2018;2(4):360–78.

    PubMed  PubMed Central  Google Scholar 

  31. MacDonald IM, Lee T. Best vitelliform macular dystrophy. In: Pagon RA, et al., editors. GeneReviews(R). University of Washington, Seattle; 1993.

    Google Scholar 

  32. Glybina IV, Frank RN. Localization of multifocal electroretinogram abnormalities to the lesion site: findings in a family with Best disease. Arch Ophthalmol. 2006;124(11):1593–600.

    PubMed  Google Scholar 

  33. Lafaut BA, et al. Clinical and electrophysiological findings in autosomal dominant vitreoretinochoroidopathy: report of a new pedigree. Graefes Arch Clin Exp Ophthalmol. 2001;239(8):575–82.

    CAS  PubMed  Google Scholar 

  34. Zhang K, et al. Butterfly-shaped pattern dystrophy: a genetic, clinical, and histopathological report. Arch Ophthalmol. 2002;120(4):485–90.

    PubMed  Google Scholar 

  35. Stone EM, et al. A single EFEMP1 mutation associated with both Malattia Leventinese and Doyne honeycomb retinal dystrophy. Nat Genet. 1999;22(2):199–202.

    CAS  PubMed  Google Scholar 

  36. Haimovici R, et al. Symptomatic abnormalities of dark adaptation in patients with EFEMP1 retinal dystrophy (Malattia Leventinese/Doyne honeycomb retinal dystrophy). Eye (Lond). 2002;16(1):7–15.

    CAS  Google Scholar 

  37. Akahori M, et al. Dominant mutations in RP1L1 are responsible for occult macular dystrophy. Am J Hum Genet. 2010;87(3):424–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Miyake Y, Tsunoda K. Occult macular dystrophy. Jpn J Ophthalmol. 2015;59(2):71–80.

    PubMed  Google Scholar 

  39. Hayashi T, et al. Autosomal dominant occult macular dystrophy with an RP1L1 mutation (R45W). Optom Vis Sci. 2012;89(5):684–91.

    PubMed  Google Scholar 

  40. Kondo M, et al. Occult macular dystrophy in an 11 year old boy. Br J Ophthalmol. 2004;88(12):1602–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Piao CH, et al. Multifocal electroretinogram in occult macular dystrophy. Invest Ophthalmol Vis Sci. 2000;41(2):513–7.

    CAS  PubMed  Google Scholar 

  42. Ahn SJ, et al. Multimodal imaging of occult macular dystrophy. JAMA Ophthalmol. 2013;131(7):880–90.

    PubMed  Google Scholar 

  43. Tsunoda K, et al. Clinical characteristics of occult macular dystrophy in family with mutation of RP1l1 gene. Retina. 2012;32(6):1135–47.

    CAS  PubMed  Google Scholar 

  44. Kondo M, Miyake Y. Assessment of local cone on- and off-pathway function using multifocal ERG technique. Doc Ophthalmol. 2000;100(2–3):139–54.

    CAS  PubMed  Google Scholar 

  45. Kabuto T, et al. A new mutation in the RP1L1 gene in a patient with occult macular dystrophy associated with a depolarizing pattern of focal macular electroretinograms. Mol Vis. 2012;18:1031–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Small KW, et al. North Carolina macular dystrophy and central areolar pigment epithelial dystrophy. One family, one disease. Arch Ophthalmol. 1992;110(4):515–8.

    CAS  PubMed  Google Scholar 

  47. Lefler WH, Wadsworth JA, Sidbury JB Jr. Hereditary macular degeneration and amino-aciduria. Am J Ophthalmol. 1971;71(1 Pt 2):224–30.

    CAS  PubMed  Google Scholar 

  48. Small KW, et al. North Carolina macular dystrophy phenotype in France maps to the MCDR1 locus. Mol Vis. 1997;3:1.

    CAS  PubMed  Google Scholar 

  49. Sauer CG, et al. An ancestral core haplotype defines the critical region harbouring the North Carolina macular dystrophy gene (MCDR1). J Med Genet. 1997;34(12):961–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Reichel MB, et al. Phenotype of a British North Carolina macular dystrophy family linked to chromosome 6q. Br J Ophthalmol. 1998;82(10):1162–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang Z, et al. Clinical characterization and genetic mapping of North Carolina macular dystrophy. Vision Res. 2008;48(3):470–7.

    CAS  PubMed  Google Scholar 

  52. Khurana RN, et al. A reappraisal of the clinical spectrum of North Carolina macular dystrophy. Ophthalmology. 2009;116(10):1976–83.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minzhong Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kheir, W.J. et al. (2019). Macular Dystrophies. In: Yu, M., Creel, D., Iannaccone, A. (eds) Handbook of Clinical Electrophysiology of Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-30417-1_5

Download citation

Publish with us

Policies and ethics