Skip to main content

Maternal Prenatal Exposures in Pregnancy and Autism Spectrum Disorder: An Insight into the Epigenetics of Drugs and Diet as Key Environmental Influences

Part of the Advances in Neurobiology book series (NEUROBIOL,volume 24)

Abstract

Autism spectrum disorder (ASD) is a rapidly growing global pandemic that affects an estimated 1 in 59–68 children. It is a complex disease with both genetic and environmental etiologies. Due to the rapid increase in the incidence of ASD, environmental causes for ASD are gaining attention. Efforts to probe several environmental exposures that could contribute to causing ASD are underway. In this regard, this chapter is directed towards understanding prenatal exposure to key environmental factors i.e., drugs and dietary nutrients that may act via the same molecular pathway - epigenetics as a potential etiological factor for ASD. Epigenetic regulation is a molecular mechanism known to be a significant contributor to neurodevelopmental disorders. It also offers a means to explain how environmental exposures can impact genetics. We discuss the impact of maternal exposures to certain drugs, and dietary intake, on the developing fetus during pregnancy. Maternal Exposure to some drugs during gestation are associated with a higher risk of ASD, while exposure to other dietary compounds may offer promise to rescue epigenetic regulatory insults related to ASD. However, more work in this important area is still required, nevertheless preliminary research already has important implications in the understanding, prevention and treatment of ASD.

Keywords

  • Autism spectrum disorder
  • Epigenetic regulation
  • Prenatal drugs
  • Epigenetic diet
  • Epigenetic drugs

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-30402-7_5
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-30402-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1

References

  1. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5®). Washington, DC: Author.

    CrossRef  Google Scholar 

  2. Homberg, J. R., Kyzar, E. J., Scattoni, M. L., Norton, W. H., Pittman, J., Gaikwad, S., et al. (2016). Genetic and environmental modulation of neurodevelopmental disorders: Translational insights from labs to beds. Brain Research Bulletin, 125, 79–91.

    CrossRef  PubMed  Google Scholar 

  3. Mpaka, D. M., Okitundu, D. L. E. A., Ndjukendi, A. O., N’situ, A. M., Kinsala, S. Y., Mukau, J. E., et al. (2016). Prevalence and comorbidities of autism among children referred to the outpatient clinics for neurodevelopmental disorders. The Pan African Medical Journal, 25, 82–82.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Vissers, L. E. L. M., Gilissen, C., & Veltman, J. A. (2015). Genetic studies in intellectual disability and related disorders. Nature Reviews Genetics, 17, 9.

    CrossRef  CAS  PubMed  Google Scholar 

  5. Boyle, C. A., Boulet, S., Schieve, L. A., Cohen, R. A., Blumberg, S. J., Yeargin-Allsopp, M., et al. (2011). Trends in the prevalence of developmental disabilities in US Children, 1997–2008. Pediatrics, 127, 1034–1042.

    CrossRef  PubMed  Google Scholar 

  6. Gupta, S., Venkatesan, S. P., Goswami, S., & Kumar, R. (2018). Emerging trends in the diagnosis and intervention of neurodevelopmental disorders. IGI Global.

    Google Scholar 

  7. Christensen, D. L., Baio, J., Van Naarden Braun, K., Bilder, D., Charles, J., Constantino, J. N., et al. (2016). Prevalence and characteristics of autism spectrum disorder among children aged 8 Years--Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2012. MMWR Surveillance Summaries, 65, 1–23.

    CrossRef  PubMed Central  Google Scholar 

  8. Elsabbagh, M., Divan, G., Koh, Y.-J., Kim, Y. S., Kauchali, S., Marcín, C., et al. (2012). Global prevalence of autism and other pervasive developmental disorders. Autism Research: Official Journal of the International Society for Autism Research, 5, 160–179.

    CrossRef  Google Scholar 

  9. Baio, J., Wiggins, L., Christensen, D. L., Maenner, M. J., Daniels, J., Warren, Z., et al. (2018). Prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 Sites, United States, 2014. Morbidity and Mortality Weekly Report. Surveillance Summaries (Washington, D.C. : 2002), 67, 1–23.

    CrossRef  Google Scholar 

  10. Xu, G., Strathearn, L., Liu, B., & Bao, W. (2018). Prevalence of autism spectrum disorder among us children and adolescents, 2014–2016. JAMA, 319, 81–82.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Bilbo, S. D., Jones, J. P., & Parker, W. (2012). Is autism a member of a family of diseases resulting from genetic/cultural mismatches? Implications for treatment and prevention. Autism Research and Treatment, 2012, 910946.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  12. Bilbo, S. D., Nevison, C. D., & Parker, W. (2015). A model for the induction of autism in the ecosystem of the human body: The anatomy of a modern pandemic? Microbial Ecology in Health and Disease, 26, 26253.

    CrossRef  PubMed  Google Scholar 

  13. Meerding, W. J., Bonneux, L., Polder, J. J., Koopmanschap, M. A., & Van Der Maas, P. J. (1998). Demographic and epidemiological determinants of healthcare costs in Netherlands: Cost of illness study. BMJ (Clinical research ed.), 317, 111–115.

    CrossRef  CAS  Google Scholar 

  14. El-Fishawy, P., & State, M. W. (2010). The genetics of autism: Key issues, recent findings, and clinical implications. The Psychiatric Clinics of North America, 33, 83–105.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Geschwind, D. H. (2011). Genetics of autism spectrum disorders. Trends in Cognitive Sciences, 15, 409–416.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Hertz-Picciotto, I., Schmidt, R. J., & Krakowiak, P. (2018). Understanding environmental contributions to autism: Causal concepts and the state of science. Autism Research, 11, 554–586.

    CrossRef  PubMed  Google Scholar 

  17. Lyall, K., Schmidt, R. J., & Hertz-Picciotto, I. (2014). Maternal lifestyle and environmental risk factors for autism spectrum disorders. International Journal of Epidemiology, 43, 443–464.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  18. Grayson, D. R., & Guidotti, A. (2016). Merging data from genetic and epigenetic approaches to better understand autistic spectrum disorder. Epigenomics, 8, 85–104.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  19. Loke, Y. J., Hannan, A. J., & Craig, J. M. (2015). The role of epigenetic change in autism spectrum disorders. Frontiers in Neurology, 6, 107.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Zahir, F. R., & Brown, C. J. (2011). Epigenetic impacts on neurodevelopment: Pathophysiological mechanisms and genetic modes of action. Pediatric Research, 69, 92R.

    CrossRef  PubMed  Google Scholar 

  21. Bernier, R., Golzio, C., Xiong, B., Stessman, H. A., Coe, B. P., Penn, O., et al. (2014). Disruptive CHD8 mutations define a subtype of autism early in development. Cell, 158, 263–276.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  22. O’Roak, B. J., Vives, L., Girirajan, S., Karakoc, E., Krumm, N., Coe, B. P., et al. (2012). Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature, 485, 246–250.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zahir, F. R., Tucker, T., Mayo, S., Brown, C. J., Lim, E. L., Taylor, J., et al. (2016). Intragenic CNVs for epigenetic regulatory genes in intellectual disability: Survey identifies pathogenic and benign single exon changes. American Journal of Medical Genetics. Part A, 170, 2916–2926.

    CrossRef  CAS  PubMed  Google Scholar 

  24. Keil, K. P., & Lein, P. J. (2016). DNA methylation: A mechanism linking environmental chemical exposures to risk of autism spectrum disorders? Environmental Epigenetics, 2, dvv012.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  25. Elagoz Yuksel, M., Yuceturk, B., Karatas, O. F., Ozen, M., & Dogangun, B. (2016). The altered promoter methylation of oxytocin receptor gene in autism. Journal of Neurogenetics, 30, 280–284.

    CrossRef  CAS  PubMed  Google Scholar 

  26. Eshraghi, A. A., Liu, G., Kay, S.-I. S., Eshraghi, R. S., Mittal, J., Moshiree, B., et al. (2018). Epigenetics and autism spectrum disorder: Is there a correlation? Frontiers in Cellular Neuroscience, 12, 78–78.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gunawardhana, L. P., Baines, K. J., Mattes, J., Murphy, V. E., Simpson, J. L., & Gibson, P. G. (2014). Differential DNA methylation profiles of infants exposed to maternal asthma during pregnancy. Pediatric Pulmonology, 49, 852–862.

    CrossRef  PubMed  Google Scholar 

  28. Ladd-Acosta, C., Hansen, K. D., Briem, E., Fallin, M. D., Kaufmann, W. E., & Feinberg, A. P. (2014). Common DNA methylation alterations in multiple brain regions in autism. Molecular Psychiatry, 19, 862–871.

    CrossRef  CAS  PubMed  Google Scholar 

  29. Sun, W., Poschmann, J., Cruz-Herrera Del Rosario, R., Parikshak, N. N., Hajan, H. S., Kumar, V., et al. (2016). Histone acetylome-wide association study of autism spectrum disorder. Cell, 167, 1385–1397.e11.

    CrossRef  CAS  PubMed  Google Scholar 

  30. Wu, Y. E., Parikshak, N. N., Belgard, T. G., & Geschwind, D. H. (2016). Genome-wide, integrative analysis implicates microRNA dysregulation in autism spectrum disorder. Nature Neuroscience, 19, 1463–1476.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rosikiewicz, W., & Makalowska, I. (2016). Biological functions of natural antisense transcripts. Acta Biochimica Polonica, 63, 665–673.

    CAS  PubMed  Google Scholar 

  32. Altucci, L., & Rots, M. G. (2016). Epigenetic drugs: From chemistry via biology to medicine and back. Clinical Epigenetics, 8, 56–56.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  33. Heerboth, S., Lapinska, K., Snyder, N., Leary, M., Rollinson, S., & Sarkar, S. (2014). Use of epigenetic drugs in disease: An overview. Genetics & Epigenetics, 6, 9–19.

    CrossRef  CAS  Google Scholar 

  34. Yang, X., Lay, F., Han, H., & Jones, P. A. (2010). Targeting DNA methylation for epigenetic therapy. Trends in Pharmacological Sciences, 31, 536–546.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gnyszka, A., Jastrzębski, Z., & Flis, S. (2013). DNA methyltransferase inhibitors and their emerging role in epigenetic therapy of cancer. Anticancer Research, 33, 2989–2996.

    CAS  PubMed  Google Scholar 

  36. Ahuja, N., Sharma, A. R., & Baylin, S. B. (2016). Epigenetic therapeutics: A new weapon in the war against cancer. Annual Review of Medicine, 67, 73–89.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eckschlager, T., Plch, J., Stiborova, M., & Hrabeta, J. (2017). Histone deacetylase inhibitors as anticancer drugs. International Journal of Molecular Sciences, 18, 1414.

    CrossRef  CAS  PubMed Central  Google Scholar 

  38. Goey, A. K., Sissung, T. M., Peer, C. J., & Figg, W. D. (2016). Pharmacogenomics and histone deacetylase inhibitors. Pharmacogenomics, 17, 1807–1815.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dekker, F. J., Van Den Bosch, T., & Martin, N. I. (2014). Small molecule inhibitors of histone acetyltransferases and deacetylases are potential drugs for inflammatory diseases. Drug Discovery Today, 19, 654–660.

    CrossRef  CAS  PubMed  Google Scholar 

  40. Forster, V. J., Mcdonnell, A., Theobald, R., & Mckay, J. A. (2017). Effect of methotrexate/vitamin B(12) on DNA methylation as a potential factor in leukemia treatment-related neurotoxicity. Epigenomics, 9, 1205–1218.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  41. Williams, K., Brignell, A., Randall, M., Silove, N., & Hazell, P. (2013). Selective serotonin reuptake inhibitors (SSRIs) for autism spectrum disorders (ASD). Cochrane Database of Systematic Reviews, Cd004677.

    Google Scholar 

  42. Ahmadvand, M., Noruzinia, M., Fard, A. D., Zohour, M. M., Tabatabaiefar, M. A., Soleimani, M., et al. (2014). The role of epigenetics in the induction of fetal hemoglobin: A combination therapy approach. International Journal of Hematology-Oncology and Stem Cell Research, 8, 9–14.

    PubMed  PubMed Central  Google Scholar 

  43. Mahajan, S. S., Leko, V., Simon, J. A., & Bedalov, A. (2011). Sirtuin modulators. Handbook of Experimental Pharmacology, 206, 241–255.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stromland, K., Nordin, V., Miller, M., Akerstrom, B., & Gillberg, C. (1994). Autism in thalidomide embryopathy: A population study. Developmental Medicine and Child Neurology, 36, 351–356.

    CrossRef  CAS  PubMed  Google Scholar 

  45. Christensen, J., Grønborg, T. K., Sørensen, M. J., Schendel, D., Parner, E. T., Pedersen, L. H., et al. (2013). Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA, 309, 1696–1703.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  46. Veroniki, A. A., Rios, P., Cogo, E., Straus, S. E., Finkelstein, Y., Kealey, R., et al. (2017). Comparative safety of antiepileptic drugs for neurological development in children exposed during pregnancy and breast feeding: A systematic review and network meta-analysis. BMJ Open, 7, e017248.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  47. Croen, L. A., Connors, S. L., Matevia, M., Qian, Y., Newschaffer, C., & Zimmerman, A. W. (2011). Prenatal exposure to beta2-adrenergic receptor agonists and risk of autism spectrum disorders. Journal of Neurodevelopmental Disorders, 3, 307–315.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  48. Harrington, R. A., Lee, L. C., Crum, R. M., Zimmerman, A. W., & Hertz-Picciotto, I. (2013). Serotonin hypothesis of autism: Implications for selective serotonin reuptake inhibitor use during pregnancy. Autism Research, 6, 149–168.

    CrossRef  PubMed  Google Scholar 

  49. Harrington, R. A., Lee, L.-C., Crum, R. M., Zimmerman, A. W., & Hertz-Picciotto, I. (2014). Prenatal SSRI use and offspring with autism spectrum disorder or developmental delay. Pediatrics, 133, e1241–e1248.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  50. Gidaya, N. B., Lee, B. K., Burstyn, I., Yudell, M., Mortensen, E. L., & Newschaffer, C. J. (2014). In utero exposure to selective serotonin reuptake inhibitors and risk for autism spectrum disorder. Journal of Autism and Developmental Disorders, 44, 2558–2567.

    CrossRef  PubMed  Google Scholar 

  51. Mezzacappa, A., Lasica, P. A., Gianfagna, F., Cazas, O., Hardy, P., Falissard, B., et al. (2017). Risk for autism spectrum disorders according to period of prenatal antidepressant exposure: A systematic review and meta-analysis. JAMA Pediatrics, 171, 555–563.

    CrossRef  PubMed  Google Scholar 

  52. Morales, D. R., Slattery, J., Evans, S., & Kurz, X. (2018). Antidepressant use during pregnancy and risk of autism spectrum disorder and attention deficit hyperactivity disorder: Systematic review of observational studies and methodological considerations. BMC Medicine, 16, 6.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  53. Bauer, A. Z., Kriebel, D., Herbert, M. R., Bornehag, C. G., & Swan, S. H. (2018). Prenatal paracetamol exposure and child neurodevelopment: A review. Hormones and Behavior, 101, 125–147.

    CrossRef  CAS  PubMed  Google Scholar 

  54. Gidaya, N. B., Lee, B. K., Burstyn, I., Michael, Y., Newschaffer, C. J., & Mortensen, E. L. (2016). In utero exposure to beta-2-adrenergic receptor agonist drugs and risk for autism spectrum disorders. Pediatrics, 137, e20151316.

    CrossRef  PubMed  Google Scholar 

  55. Ingram, J. L., Peckham, S. M., Tisdale, B., & Rodier, P. M. (2000). Prenatal exposure of rats to valproic acid reproduces the cerebellar anomalies associated with autism. Neurotoxicology and Teratology, 22, 319–324.

    CrossRef  CAS  PubMed  Google Scholar 

  56. Rasalam, A. D., Hailey, H., Williams, J. H., Moore, S. J., Turnpenny, P. D., Lloyd, D. J., et al. (2005). Characteristics of fetal anticonvulsant syndrome associated autistic disorder. Developmental Medicine and Child Neurology, 47, 551–555.

    CrossRef  CAS  PubMed  Google Scholar 

  57. Bromley, R. L., Mawer, G., Clayton-Smith, J., & Baker, G. A. (2008). Autism spectrum disorders following in utero exposure to antiepileptic drugs. Neurology, 71, 1923–1924.

    CrossRef  CAS  PubMed  Google Scholar 

  58. Christensen, J., Gronborg, T. K., Sorensen, M. J., Schendel, D., Parner, E. T., Pedersen, L. H., et al. (2013). Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA, 309, 1696–1703.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  59. Grafodatskaya, D., Chung, B., Szatmari, P., & Weksberg, R. (2010). Autism spectrum disorders and epigenetics. Journal of the American Academy of Child and Adolescent Psychiatry, 49, 794–809.

    CrossRef  PubMed  Google Scholar 

  60. Anderson, G. M., Freedman, D. X., Cohen, D. J., Volkmar, F. R., Hoder, E. L., Mcphedran, P., et al. (1987). Whole blood serotonin in autistic and normal subjects. Journal of Child Psychology and Psychiatry, 28, 885–900.

    CrossRef  CAS  PubMed  Google Scholar 

  61. Cook Jr., E. H., Leventhal, B. L., & Freedman, D. X. (1988). Free serotonin in plasma: Autistic children and their first-degree relatives. Biological Psychiatry, 24, 488–491.

    CrossRef  PubMed  Google Scholar 

  62. Vorhees, C. V., Acuff-Smith, K. D., Schilling, M. A., Fisher, J. E., Moran, M. S., & Buelke-Sam, J. (1994). A developmental neurotoxicity evaluation of the effects of prenatal exposure to fluoxetine in rats. Fundamental and Applied Toxicology, 23, 194–205.

    CrossRef  CAS  PubMed  Google Scholar 

  63. Rai, D., Lee, B. K., Dalman, C., Golding, J., Lewis, G., & Magnusson, C. (2013). Parental depression, maternal antidepressant use during pregnancy, and risk of autism spectrum disorders: Population based case-control study. BMJ, 346, f2059.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  64. Croen, L. A., Grether, J. K., Yoshida, C. K., Odouli, R., & Hendrick, V. (2011). Antidepressant use during pregnancy and childhood autism spectrum disorders. Archives of General Psychiatry, 68, 1104–1112.

    CrossRef  PubMed  Google Scholar 

  65. Sorensen, M. J., Gronborg, T. K., Christensen, J., Parner, E. T., Vestergaard, M., Schendel, D., et al. (2013). Antidepressant exposure in pregnancy and risk of autism spectrum disorders. Clinical Epidemiology, 5, 449–459.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  66. Alwan, S., Friedman, J. M., & Chambers, C. (2016). Safety of selective serotonin reuptake inhibitors in pregnancy: A review of current evidence. CNS Drugs, 30, 499–515.

    CrossRef  CAS  PubMed  Google Scholar 

  67. Andrade, C. (2016). Use of acetaminophen (paracetamol) during pregnancy and the risk of autism spectrum disorder in the offspring. The Journal of Clinical Psychiatry, 77, e152–e154.

    CrossRef  PubMed  Google Scholar 

  68. Steel, A., Adams, J., Sibbritt, D., & Broom, A. (2015). The outcomes of complementary and alternative medicine use among pregnant and birthing women: Current trends and future directions. Women’s Health, 11, 309–323.

    CAS  PubMed  Google Scholar 

  69. Li, Y., Saldanha, S. N., & Tollefsbol, T. O. (2013). Impact of epigenetic dietary compounds on transgenerational prevention of human diseases. The AAPS Journal, 16, 27–36.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bianco-Miotto, T., Craig, J. M., Gasser, Y. P., Van Dijk, S. J., & Ozanne, S. E. (2017). Epigenetics and DOHaD: From basics to birth and beyond. Journal of Developmental Origins of Health and Disease, 8, 513–519.

    CrossRef  CAS  PubMed  Google Scholar 

  71. Wolff, G. L., Kodell, R. L., Moore, S. R., & Cooney, C. A. (1998). Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. The FASEB Journal, 12, 949–957.

    CrossRef  CAS  PubMed  Google Scholar 

  72. Pauwels, S., Ghosh, M., Duca, R. C., Bekaert, B., Freson, K., Huybrechts, I. A. S., et al. (2016). Dietary and supplemental maternal methyl-group donor intake and cord blood DNA methylation. Epigenetics, 12, 1–10.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  73. Boeke, C. E., Baccarelli, A., Kleinman, K. P., Burris, H. H., Litonjua, A. A., Rifas-Shiman, S. L., et al. (2012). Gestational intake of methyl donors and global LINE-1 DNA methylation in maternal and cord blood: Prospective results from a folate-replete population. Epigenetics, 7, 253–260.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhu, Y., Liao, X., Lu, L., Li, W., Zhang, L., Ji, C., et al. (2017). Maternal dietary zinc supplementation enhances the epigenetic-activated antioxidant ability of chick embryos from maternal normal and high temperatures. Oncotarget, 8, 19814–19824.

    PubMed  PubMed Central  Google Scholar 

  75. Geoffroy, A., Kerek, R., Pourié, G., Helle, D., Guéant, J.-L., Daval, J.-L., et al. (2017). Late maternal folate supplementation rescues from methyl donor deficiency-associated brain defects by restoring let-7 and miR-34 pathways. Molecular Neurobiology, 54, 5017–5033.

    CrossRef  CAS  PubMed  Google Scholar 

  76. Van Dijk, S. J., Zhou, J., Peters, T. J., Buckley, M., Sutcliffe, B., Oytam, Y., et al. (2016). Effect of prenatal DHA supplementation on the infant epigenome: Results from a randomized controlled trial. Clinical Epigenetics, 8, 114–114.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hardy, T. M., & Tollefsbol, T. O. (2011). Epigenetic diet: Impact on the epigenome and cancer. Epigenomics, 3, 503–518.

    CrossRef  CAS  PubMed  Google Scholar 

  78. Meeran, S. M., Ahmed, A., & Tollefsbol, T. O. (2010). Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clinical Epigenetics, 1, 101–116.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schuchardt, J. P., Huss, M., Stauss-Grabo, M., & Hahn, A. (2010). Significance of long-chain polyunsaturated fatty acids (PUFAs) for the development and behaviour of children. European Journal of Pediatrics, 169, 149–164.

    CrossRef  CAS  PubMed  Google Scholar 

  80. Lee, H.-S., Barraza-Villarreal, A., Biessy, C., Duarte-Salles, T., Sly, P. D., Ramakrishnan, U., et al. (2014). Dietary supplementation with polyunsaturated fatty acid during pregnancy modulates DNA methylation at IGF2/H19 imprinted genes and growth of infants. Physiological Genomics, 46, 851–857.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lee, H.-S., Barraza-Villarreal, A., Hernandez-Vargas, H., Sly, P. D., Biessy, C., Ramakrishnan, U., et al. (2013). Modulation of DNA methylation states and infant immune system by dietary supplementation with ω-3 PUFA during pregnancy in an intervention study. The American Journal of Clinical Nutrition, 98, 480–487.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  82. Aggarwal, B. B., & Harikumar, K. B. (2009). Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. The International Journal of Biochemistry & Cell Biology, 41, 40–59.

    CrossRef  CAS  Google Scholar 

  83. Lopresti, A. L. (2017). Curcumin for neuropsychiatric disorders: A review of in vitro, animal and human studies. Journal of Psychopharmacology, 31, 287–302.

    CrossRef  CAS  PubMed  Google Scholar 

  84. Boyanapalli, S. S. S., & Kong, A.-N. T. (2015). “Curcumin, the King of Spices”: Epigenetic regulatory mechanisms in the prevention of cancer, neurological, and inflammatory diseases. Current Pharmacology Reports, 1, 129–139.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhu, L.-N., Mei, X., Zhang, Z.-G., Xie, Y.-P., & Lang, F. (2019). Curcumin intervention for cognitive function in different types of people: A systematic review and meta-analysis. Phytotherapy Research, 33(3), 524–533.

    CrossRef  PubMed  Google Scholar 

  86. Salehi, B., Stojanovic-Radic, Z., Matejic, J., Sharifi-Rad, M., Anil Kumar, N. V., Martins, N., et al. (2018). The therapeutic potential of curcumin: A review of clinical trials. European Journal of Medicinal Chemistry, 163, 527–545.

    CrossRef  CAS  PubMed  Google Scholar 

  87. Long, L., Li, Y., Wang, Y. D., He, Q. Y., Li, M., Cai, X. D., et al. (2010). The preventive effect of oral EGCG in a Fetal Alcohol Spectrum Disorder Mouse Model. Alcoholism: Clinical and Experimental Research, 34, 1929–1936.

    CrossRef  CAS  Google Scholar 

  88. Isac, S., Panaitescu, A. M., Spataru, A., Iesanu, M., Totan, A., Udriste, A., et al. (2017). Trans-resveratrol enriched maternal diet protects the immature hippocampus from perinatal asphyxia in rats. Neuroscience Letters, 653, 308–313.

    CrossRef  CAS  PubMed  Google Scholar 

  89. Van Handel, M., Swaab, H., De Vries, L. S., & Jongmans, M. J. (2007). Long-term cognitive and behavioral consequences of neonatal encephalopathy following perinatal asphyxia: A review. European Journal of Pediatrics, 166, 645–654.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  90. Ayad, M., & Costantine, M. M. (2015). Epidemiology of medications use in pregnancy. Seminars in Perinatology, 39, 508–511.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  91. Mosley 2nd, J. F., Smith, L. L., & Dezan, M. D. (2015). An overview of upcoming changes in pregnancy and lactation labeling information. Pharmacy Practice (Granada), 13, 605.

    CrossRef  Google Scholar 

  92. Temming, L. A., Cahill, A. G., & Riley, L. E. (2016). Clinical management of medications in pregnancy and lactation. American Journal of Obstetrics and Gynecology, 214, 698–702.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  93. Lupattelli, A., Spigset, O., Twigg, M. J., Zagorodnikova, K., Mårdby, A. C., Moretti, M. E., et al. (2014). Medication use in pregnancy: A cross-sectional, multinational web-based study. BMJ Open, 4, e004365.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mitchell, A. A., Gilboa, S. M., Werler, M. M., Kelley, K. E., Louik, C., & Hernandez-Diaz, S. (2011). Medication use during pregnancy, with particular focus on prescription drugs: 1976-2008. American Journal of Obstetrics and Gynecology, 205, 51.e1–51.e8.

    CrossRef  Google Scholar 

  95. Mitchell, A. A., Gilboa, S. M., Werler, M. M., Kelley, K. E., Louik, C., Hernández-Díaz, S., et al. (2011). Medication use during pregnancy, with particular focus on prescription drugs: 1976-2008. American Journal of Obstetrics and Gynecology, 205, 51.e1–51.e518.

    CrossRef  Google Scholar 

  96. Lo, W., & Friedman, J. (2002). Teratogenicity of recently introduced medications in human pregnancy. Obstetrics & Gynecology, 100, 465–473.

    CAS  Google Scholar 

  97. Adam, M. P., Polifka, J. E., & Friedman, J. M. (2011). Evolving knowledge of the teratogenicity of medications in human pregnancy. American Journal of Medical Genetics Part C: Seminars in Medical Genetics, 157, 175–182.

    CrossRef  Google Scholar 

  98. Hall, H. G., Griffiths, D. L., & Mckenna, L. G. (2011). The use of complementary and alternative medicine by pregnant women: A literature review. Midwifery, 27, 817–824.

    CrossRef  PubMed  Google Scholar 

  99. Wade, C., Chao, M., Kronenberg, F., Cushman, L., & Kalmuss, D. (2008). Medical pluralism among American women: Results of a national survey. Journal of Women’s Health (2002), 17, 829–840.

    CrossRef  Google Scholar 

  100. Holst, L., Wright, D., Haavik, S., & Nordeng, H. (2011). Safety and efficacy of herbal remedies in obstetrics-review and clinical implications. Midwifery, 27, 80–86.

    CrossRef  PubMed  Google Scholar 

  101. Steel, A., Adams, J., Sibbritt, D., Broom, A., Gallois, C., & Frawley, J. (2012). Utilisation of complementary and alternative medicine (CAM) practitioners within maternity care provision: Results from a nationally representative cohort study of 1,835 pregnant women. BMC Pregnancy and Childbirth, 12, 146.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  102. Thomson, M., Corbin, R., & Leung, L. (2014). Effects of ginger for nausea and vomiting in early pregnancy: A meta-analysis. Journal of American Board of Family Medicine, 27, 115–122.

    CrossRef  Google Scholar 

  103. Firouzbakht, M., Nikpour, M., Jamali, B., & Omidvar, S. (2014). Comparison of ginger with vitamin B6 in relieving nausea and vomiting during pregnancy. Ayu, 35, 289–293.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  104. Birdee, G. S., Kemper, K. J., Rothman, R., & Gardiner, P. (2014). Use of complementary and alternative medicine during pregnancy and the postpartum period: An analysis of the National Health Interview Survey. Journal of Women’s Health (2002), 23, 824–829.

    CrossRef  Google Scholar 

  105. Siu, M. T., & Weksberg, R. (2017). Epigenetics of autism spectrum disorder. Advances in Experimental Medicine and Biology, 978, 63–90.

    CrossRef  CAS  PubMed  Google Scholar 

  106. Moran, S., Martinez-Cardus, A., Boussios, S., & Esteller, M. (2017). Precision medicine based on epigenomics: The paradigm of carcinoma of unknown primary. Nature Reviews. Clinical Oncology, 14, 682–694.

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farah R. Zahir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Bastaki, K.N., Alwan, S., Zahir, F.R. (2020). Maternal Prenatal Exposures in Pregnancy and Autism Spectrum Disorder: An Insight into the Epigenetics of Drugs and Diet as Key Environmental Influences. In: Essa, M., Qoronfleh, M. (eds) Personalized Food Intervention and Therapy for Autism Spectrum Disorder Management. Advances in Neurobiology, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-30402-7_5

Download citation