Skip to main content

Medicinal Plants in Hydroponic System Under Water-Deficit Conditions—A Way to Save Water

  • Chapter
  • First Online:
Technological and Modern Irrigation Environment in Egypt

Part of the book series: Springer Water ((SPWA))

Abstract

The production of medicinal plants can be expanded when water is lacking by using selected low irrigation systems. When using deficit irrigation systems, adequate production can be achieved with the least amount of water, that, sometimes can produce more active constituents. The choice of type of hydroponics, as a technique for deficit irrigation, was facilitated by the availability of plant monitor technology and mobile apps to aid farmers in “when,” “where,” “how,” or “what” to plant and precision agriculture. The choice of method is associated with cultivated species, quality of irrigation water and the purpose of production. In general, biostimulants can help plants tolerate water-deficit stresses. These include microbial inoculants, biochemicals, amino acids, humic acids, fulvic acids, plant and seaweed extracts and more. Hydroponic systems are excellent choice as deficit irrigation techniques. In these systems, water is reclaimed and the water consumption decreases to produce the final crop unit and more active compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Omar M, Moussa A (2016) Water management in Egypt for facing the future challenges. J Adv Res 7:403–412

    Article  Google Scholar 

  2. Rorabaugh P (2017) Hydroponics page Introduction to Hydroponics and Controlled Environment Agriculture. Controlled Environment Agriculture Center, University of Arizona

    Google Scholar 

  3. FAO. Food and Agricultural Organization (2017). Statement on Water Scarcity in Agriculture. Meeting on 19–20 Apr 2017 at FAO headquarters in Rome, Italy

    Google Scholar 

  4. Raviv M, Lieth J (2008) Soilless culture: theory and practice. Working together to grow libraries in developing countries. Plant Science/Agriculture, ELSEVIER

    Google Scholar 

  5. Schroeder F, Lieth J (2002) Irrigation control in hydroponics. Chapter 11. In: Savvas D, Passam H (eds) Hydroponic production of vegetables and ornamentals. Embryo Publications, Athens Greece, pp 265–298

    Google Scholar 

  6. Lieth J, Oki I (2008) Irrigation in soilless production. Soilless culture, pp 117–156

    Google Scholar 

  7. Stemeroff J (2017) Irrigation management strategies for medical cannabis in controlled environments. M. Sc. Thesis, The University of Guelph, Canada

    Google Scholar 

  8. Wahed RA, Aslam Z, Moutonnet P, Kirda C, Tahir GR (1998) Scheduling for occasional omission of irrigation water for crop production in moisture deficit areas. Pakistan J Bio Sci 1:44–52

    Article  Google Scholar 

  9. Falivene SG, Navarro JM, Connolly K (2015) Open hydroponics of citrus compared to conventional drip irrigation best practice: first three years of trialing and Australian experience. Acta Hortic 1065:1705–1712

    Article  Google Scholar 

  10. Abdelghany A (2009) Study the performance of pulse drip irrigation in organic agriculture for potato crop in sandy soils. Ph.D. Thesis faculty of agriculture Cairo University Egypt

    Google Scholar 

  11. Azarmi F, Tabatabaie S, Nazemieh H, Dadpour M (2012) Greenhouse production of lemon verbena and valerian using different soilless and soil production systems. J Basic Appl Sci Res 2(8):8192–8195

    Google Scholar 

  12. Katsoulas N, Kittas C, Dimokas G, Lykas C (2006) Effect of irrigation frequency on rose flower production and quality. Biosyst Eng 93:237–244

    Article  Google Scholar 

  13. Giurgiu RM, Morar GA, Dumitraș A, Boancă P, Duda BM, Moldovan C (2014) Study regarding the suitability of cultivating medicinal plants in hydroponic systems in controlled environment. Res J Agri Sci 46(2):84–92

    Google Scholar 

  14. Giurgiu RM, Morar G, Dumitraș A, Vlăsceanu G, Dune A, Schroeder F (2017) A study of the cultivation of medicinal plants in hydroponic and aeroponic technologies in a protected environment. Acta Hortic 1170:671–678

    Article  Google Scholar 

  15. Chow Y, Lee LK, Zakaria NA Foo KY (2017) New emerging hydroponic system. In: International Malaysia-Indonesia-Thailand symposium on innovation and creativity (iMIT-SIC), vol 2, pp 1–4

    Google Scholar 

  16. Maucieri C, Nicoletto C, Junge R, Schmautz Z, Sambo P, Borin M (2018) Hydroponic systems and water management in aquaponics: a review. Italian J Agronomy 13:1012–1022

    Google Scholar 

  17. Waller P, Yitayew M (2016) Hydroponic irrigation systems. In: Irrigation and drainage engineering. Springer International Publishing Switzerland, pp 369–386

    Google Scholar 

  18. Khan F, Kurklu A, Ghafoor A, Ali Q, Umair M, Shahzaib M (2018) A review on hydroponic greenhouse cultivation for sustainable agriculture. Int J Agric Environ Food Sci 2(2):59–66

    Google Scholar 

  19. Valenzano V, Parente A, Serio F, Santamaria P (2008) Effect of growing system and cultivar on yield and water-use efficiency of greenhouse-grown tomato. J Hort Sci Biot 83(1):71–75

    Article  Google Scholar 

  20. Al-Tawaha A, Al-Karaki G, Al-Tawaha A, Sirajuddin S, Makhadmeh I, Wahab P, Youssef R, Al Sultan W, Massadeh A (2018) Effect of water flow rate on quantity and quality of lettuce (Lactuca sativa L.) in nutrient film technique (NFT) under hydroponics conditions. Bulgarian J Agri Sci 24:793–800

    Google Scholar 

  21. Sardare MD, Shraddha VA (2013) A review on plant without soil-hydroponics. Int J Res Eng Technol 2(3):299–304

    Article  Google Scholar 

  22. Fertinnowa (2017) Transfer of innovative techniques for sustainable water use in fertigated crops. Semi-closed hydroponic system. CORDI. EU research results

    Google Scholar 

  23. Anastasiou A, Ferentinos KP, Arvanitis KG, Sigrimis N (2005) DSS-Hortimed for on-line management of hydroponic systems. Acta Horti 691:267–274

    Article  Google Scholar 

  24. Geerts S, Raes D (2009) Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric Water Manage 96:1275–1284

    Article  Google Scholar 

  25. Gruda N, Tanny J (2014) Protected Crops. In: Dixon G, Aldous DE (eds) Horticulture: plants for people and places, Volume 1. Springer, Dordrecht Heidelberg New York London, pp 327–406

    Google Scholar 

  26. Levidowa L, Zaccariab D, Maiac R, Vivasc E, Todorovicd M, Scardignoda A (2014) Improving water-efficient irrigation: Prospects and difficulties of innovative practices. Agric Water Manag 146:84–94

    Article  Google Scholar 

  27. Lee J, Oh M (2017) Mild water deficit increases the contents of bioactive compounds in dropwort. Hort Environ Biot 58:458–466

    Article  CAS  Google Scholar 

  28. Barzegar T, Lotfi H, Rabiei V, Ghahremani Z, Nikbakht J (2017) Effect of water-deficit stress on fruit yield, antioxidant activity, and some physiological traits of four Iranian melon genotypes. Iranian J Hort Sci (Special Issue):13–25

    Google Scholar 

  29. Soni P, Abdin MZ (2017) Water deficit-induced oxidative stress affects artemisinin content and expression of proline metabolic genes in Artemisia annua L. FEBS Open Bio 25;7(3):367–381

    Google Scholar 

  30. Khalid K (2006) Influence of water stress on growth, essential oil, and chemical composition of herbs (Ocimum sp.). Int Agrophysics 20:289–296

    CAS  Google Scholar 

  31. Moosavi SG, Seghatoleslami M, Fazeli M, Jouyban Z, Ansarinia E (2014) Effect of water deficit stress and nitrogen fertilizer on flower yield and yield components of marigold (Calendula officinalis L.). Int J Biosci 4:42–49

    Article  Google Scholar 

  32. Hund A, Ruta N, Liedgens M (2009) Rooting depth and water use efficiency of tropical maize inbred lines, differing in drought tolerance. Plant Soil 318:311–325

    Article  CAS  Google Scholar 

  33. Fischer R, Rees D, Sayre K, Lu Z-M, Condon A, Saavedra A (2009) Wheat yield progress associated with higher. Plant Soil 318:311–325

    Article  CAS  Google Scholar 

  34. Tátrai Z, Sanoubar R, Pluhár Z, Mancarella S, Orsini F, Gianquinto G (2016) Morphological and physiological plant responses to drought stress in thymus citriodorus. Int J Agr 2016:1–8

    Article  CAS  Google Scholar 

  35. Pagliarulo C, Hayden A (2002) Potential for greenhouse aeroponic cultivation of medicinal root crops. College of Agriculture and Life Sciences, The University of Arizona, The Controlled Environment Agricultural Center

    Google Scholar 

  36. Hayden A, Giacomelli G, Yokelson T, Hoffmann J (2004) Aeroponics: an alternative production system for high-value root crops. Acta Hort 629:207–213

    Article  Google Scholar 

  37. Hayden A, Brigham L, Giacomelli G (2004) Aeroponic cultivation of ginger (Zingiber officinale) rhizomes. Acta Hort 629:397–402

    Article  Google Scholar 

  38. Hayden A (2006) Aeroponic and hydroponic systems for medicinal herb, rhizome, and root crops. HortScience 41(3):536–538

    Article  CAS  Google Scholar 

  39. Mairapetyan S, Alexanyan J, Tadevosyan A, Tovmasyan A, Stepanyan B, Galstyan H, Daryadar M (2018) The productivity of some valuable medicinal plants in conditions of water stream hydroponic. J Agr Sci Food Res 9:237–240

    Google Scholar 

  40. Mairapetyan S, Alexanyan J, Tovmasyan1 A, Daryadar M, Stepanian B, Mamikonyan V (2016) Productivity, biochemical indices and antioxidant activity of Peppermint (Mentha piperita L.) and basil (Ocimum basilicum L.) in condition of hydroponics. J Sci Technol Environ Inform 3:191–194

    Google Scholar 

  41. Daryadar M (2015) Water stream hydroponics as a new technology for soilless production of valuable essential oil and medicinal plant peppermint. Acad J Agri Res 3(10):259–263

    CAS  Google Scholar 

  42. Keat C, Kannan C (2015) Development of a cylindrical hydroponics system for vertical farming chow. J Agr Sci Tech B 5:93–100

    Google Scholar 

  43. Wilson G (2005) Greenhouse aquaponics proves superior to inorganic hydroponics. Aquaponic J. Issue #39 4th quarter

    Google Scholar 

  44. Woodruff J (2015) Aquaponic farming saves water, but can it feed the country? https://www.pbs.org/newshour/show/aquaponic-farming-saves-water-can-feed-country

  45. Ray M (2017) Aquaponics: an interview with sweet water organics’ world watch institute

    Google Scholar 

  46. Wilson AL (2004) Aquaponics research at RMIT University, Melbourne Australia. Aquaponic J. Issue #35 4th quarter

    Google Scholar 

  47. Ahmed A, Yu H, Yang X, Jiang W (2014) Deficit irrigation affects growth, yield, vitamin c content, and irrigation water use efficiency of hot pepper grown in soilless culture. Hort Sci 49(6):722–728

    Article  CAS  Google Scholar 

  48. Strojny Z, Nelson PV, Willitz DH (1998) Pot soil air composition in conditions of high soil moisture and its influence on chrysanthemum growth. Sci Horti 73:125–136

    Article  Google Scholar 

  49. Koriesh EM, Khalil AM, Abd El-Fattah YM, Attia K (2009) Application of one system of hydroponics in production of Catharanthus roseus L. G. Don. J. Agric Sci Mansoura Univ 34:6595–6615

    Google Scholar 

  50. Sonneveld C (1981) Items for application of macro-elements in soilless cultures. Acta Hort 126:187–195

    Google Scholar 

  51. Kiferle C, Lucchesini M, Mensuali-Sodi A, Maggini R, Raffaelli A, Pardossi A (2011) Rosmarinic acid content in basil plants grown in vitro and in hydroponics. Cent Eur J Biol 6:946–957

    CAS  Google Scholar 

  52. Sgherri C, Cecconami S, Pinzino C, Navari-Izzo F, Izzo R (2010) Levels of antioxidants and nutraceuticals in basil grown in hydroponics and soil. Food Chem 123:416–422

    Article  CAS  Google Scholar 

  53. Hassanpouraghdam M, Tabatabaie S, Nazemiyeh H, Aflatuni A (2008) Essential oil composition of hydroponically grown Chrysanthemum balsamita. J Essent Oil-Bear Plants 11:649–654

    Article  CAS  Google Scholar 

  54. Resh H (2012) Hydroponic food production: a definitive guidebook for the advanced home gardener and the commercial hydroponic grower, 7th edn. CRC, Inc., 560p

    Google Scholar 

  55. Maggini R, Kiferle C, Lucia G, Andrea R (2012) Growing medicinal plants in hydroponic culture

    Google Scholar 

  56. Beyene B, Deribe H (2016) Review on application and management of medicinal plants for the livelihood of the local community. J Resour Dev Manag 22:33–39

    Google Scholar 

  57. Brown P, Saa S (2015) Biostimulants in agriculture. Front Plant Sci 6:671

    Article  Google Scholar 

  58. Bulgari R, Cocetta G, Trivellini A, Vernieri P, Ferrante A (2015) Biostimulants and crop responsesa review. Biol Agric Hortic 31:1–17

    Article  Google Scholar 

  59. Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41

    Article  CAS  Google Scholar 

  60. Colla G, Nardi S, Cardarelli M, Ertani A, Lucini L, Canaguier R, Rouphael Y (2015) Protein hydrolysates as biostimulants in horticulture. Sci Horti 196:28–38

    Article  CAS  Google Scholar 

  61. Koriesh EM, Abd El-Fattah YM, Abo El-Soud IH, Khalil MF (2018) Effects of different nutrient solution formulations supplemented with willow bark or juvenile branches decoction on growth of Coleus plants. HortScience J Suez Canal Univ 7:11–19

    Article  Google Scholar 

  62. Koriesh EM, Abo-El-Soud IH, Abd El-Fattah YM, Khalil M (2019) Comparison of nutrient solution formulations supplemented with willow extract on coleus (Plectranthus scutellarioides, (L.) r.br.) grown in sand culture. ii. active constituents (Under publication)

    Google Scholar 

  63. Povero G, Mejia JF, Tommaso D, Piaggesi A, Warrior P (2016) A systematic approach to discover and characterize natural plant biostimulants. Front Plant Sci 7:435

    Article  Google Scholar 

  64. Saa S, Olivos-DelRio A, Castro S, Brown PH (2015) Foliar application of microbial and plant based biostimulants increases growth and potassium uptake in almond (Prunus dulcis [Mill] DA Webb). Front Plant Sci 6(87):1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eid M. Koriesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koriesh, E.M., Abo El-Soud, I.H. (2020). Medicinal Plants in Hydroponic System Under Water-Deficit Conditions—A Way to Save Water. In: Omran, ES., Negm, A. (eds) Technological and Modern Irrigation Environment in Egypt. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-30375-4_7

Download citation

Publish with us

Policies and ethics