Skip to main content

Machine Learning for IoT


Machine learning stems from a discipline with a long history, namely, artificial intelligence, which uses statistical techniques to equip computer systems with the ability to "learn" from data, rather than following pre-programmed rules. Over the past few years, machine learning has become one of the workhorses of information technology and has become enmeshed in, albeit usually hidden, every aspect of daily lives. From image recognition to voice recognition, and from predictive maintenance in production lines to health diagnosis systems, the use of machine learning have been embedded everywhere, which invariably accelerates the advancement of most technologies and their applications accordingly.

This chapter intends to provide readers with an overview of machine learning. We will first discuss some fundamentals of probability theory, statistics, and linear algebra, since they are the basics that many machine learning solutions must rely on to become amenable. Next, we provide several use cases of machine learning in IoT solutions. Finally, we will discuss the details of two main categories in machine learning, namely, supervised learning and unsupervised learning.


  • Artificial intelligence
  • Machine learning
  • Probability theory
  • Linear algebra
  • Supervised learning
  • Unsupervised learning
  • Data preparation
  • Regression analysis
  • Regularization
  • Elastic net regularization
  • Bayesian linear regression
  • Feature selection
  • Entropy
  • Chi-square test
  • Classification
  • Confusion matrix
  • Overfitting and underfitting
  • Over- and undersampling
  • K-nearest neighbor
  • Logistic regression
  • Support vector machine
  • Decision tree classifier
  • Ensembles
  • Random forest
  • Bootstrap aggregating
  • Boosting
  • Artificial neural networks
  • Deep learning
  • Convolution neural networks
  • K-means clustering
  • Hierarchical clustering

Develop a passion for learning. If you do, you will never cease to grow.

Anthony J. D’Angelo

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-30367-9_5
  • Chapter length: 71 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-30367-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)
Hardcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2
Fig. 5.3
Fig. 5.4
Fig. 5.5
Fig. 5.6
Fig. 5.7
Fig. 5.8
Fig. 5.9
Fig. 5.10
Fig. 5.11
Fig. 5.12
Fig. 5.13
Fig. 5.14
Fig. 5.15
Fig. 5.16
Fig. 5.17
Fig. 5.18
Fig. 5.19
Fig. 5.20
Fig. 5.21
Fig. 5.22
Fig. 5.23
Fig. 5.24
Fig. 5.25
Fig. 5.26
Fig. 5.27
Fig. 5.28
Fig. 5.29
Fig. 5.30
Fig. 5.31
Fig. 5.32
Fig. 5.33
Fig. 5.34
Fig. 5.35
Fig. 5.36
Fig. 5.37
Fig. 5.38
Fig. 5.39
Fig. 5.40
Fig. 5.41
Fig. 5.42
Fig. 5.43
Fig. 5.44
Fig. 5.45
Fig. 5.46
Fig. 5.47
Fig. 5.48
Fig. 5.49
Fig. 5.50
Fig. 5.51
Fig. 5.52
Fig. 5.53
Fig. 5.54
Fig. 5.55
Fig. 5.56
Fig. 5.57
Fig. 5.58
Fig. 5.59
Fig. 5.60
Fig. 5.61
Fig. 5.62
Fig. 5.63
Fig. 5.64
Fig. 5.65
Fig. 5.66
Fig. 5.67


  1. C.M. Bishop, Pattern Recognition and Machine Learning (Springer, 2006)

    Google Scholar 

  2. H. Daumé III, A Course in Machine Learning. 2012.

    Google Scholar 

  3. R. Battiti, M. Brunato, The LION Way – Machine Learning plus Intelligent Optimization (LIONlab, University of Trento, Italy, 2017)

    CrossRef  Google Scholar 

  4. A. Smola, S.V.N. Vishwanathan, Introduction to Machine Learning (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  5. A. Smola, S. Vishwanathan, Introduction to Machine Learning, vol 32 (Cambridge University, Cambridge, 2008), p. 34

    Google Scholar 

  6. H. Zou, T. Hastie, Regularization and variable selection via the elastic net. J. R. Stat. Soc. 67(2), 301–320 (2005)

    CrossRef  MathSciNet  Google Scholar 

  7. O. Sosnovshchenko, O. Baiev, Machine Learning with Swift: Artificial Intelligence for IOS (Packt Publishing Ltd, 2018).

  8. Stanford Machine Learning. Available from:

  9. I. Steinwart, A. Christmann, Support Vector Machines (Springer Science & Business Media, 2008).

  10. SVM (Support Vector Machine)—Theory. Available from:

  11. H.H. Aghdam, E.J. Heravi, Guide to Convolutional Neural Networks, vol 10 (Springer, New York, NY, 2017), pp. 978–973

    CrossRef  Google Scholar 

  12. K. Huang, Deep Learning: Fundamentals (Springer, Theory and Applications, 2019).

  13. A. Carvalhal, T. Ribeiro, Do artificial neural networks provide better forecasts? Evidence from Latin American stock indexes. Lat. Am. Bus. Rev. 8(3), 92–110 (2008)

    CrossRef  Google Scholar 

  14. Basic Overview of Convolutional Neural Network (CNN). Available from:

  15. A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks. in Advances in Neural Information Processing Systems, (2012), pp. 1097–1105.

    Google Scholar 

  16. Convolutional Neural Networks. Available from:

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Firouzi, F., Farahani, B., Ye, F., Barzegari, M. (2020). Machine Learning for IoT. In: Firouzi, F., Chakrabarty, K., Nassif, S. (eds) Intelligent Internet of Things. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30366-2

  • Online ISBN: 978-3-030-30367-9

  • eBook Packages: EngineeringEngineering (R0)