Skip to main content

Smart Learning Using Big and Small Data for Mobile and IOT e-Health

  • Chapter
  • First Online:
Book cover Intelligent Internet of Things

Abstract

In this chapter, we provide a snapshot of the state-of-the-art research in mobile and IOT e-health studies that leverage AI technologies for making sense of personal health measurement and assessment, as well as for delivering situational, actionable insights in care flows. In recent years, the proliferation of consumer and pervasive health technologies has enabled a whole new generation of sensor-based precision measurement technologies and mobile ecological momentary assessments that are able to capture patient-specific characteristics in context [3–5]. The captured physiomes (i.e., a collection of quantitative and integrated descriptions of the functional behavior of the physiological state of an individual [1]) can help detect physiological macro-phenotypes such as inflammatory response and fatigue [8], as well as critical conditions such as seizure and atrial fibrillation [6, 7]. The accumulated longitudinal records of such phonemes are also expected to capture patterns that can help distinguish individual physiological differences, e.g., being insulin-sensitive or insulin-resistant, which will make a difference in disease diagnosis and prognosis [8].

There are no secrets to success. It is the result of preparation, hard work, and learning from failure.

Colin Powell

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.K. Choe, N.B. Lee, B. Lee, W. Pratt, J.A. Kientz, in Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems. Understanding quantified-selfers’ practices in collecting and exploring personal data. (Toronto, ON, Canada, Apr. 26–May 1). (ACM Press, New York, 2014), pp. 1143–1152

    Google Scholar 

  2. K. Shameer, M.A. Badgeley, R. Miotto, B.S. Glicksberg, J.W. Morgan, J.T. Dudley, Translational bioinformatics in the era of real-time biomedical, health care and wellness data streams. Brief. Bioinform. 18(1), 105–124 (2017). https://doi.org/10.1093/bib/bbv118

    Article  Google Scholar 

  3. B. Knowles, A. Smith-Renner, F. Poursabzi-Sangdeh, D. Lu, H. Alabi, Uncertainty in current and future health wearables. Commun. ACM 61(12), 62–67 (2018). https://doi.org/10.1145/3199201

    Article  Google Scholar 

  4. J.B. Bassingthwaighte, Strategies for the physiome project. Ann. Biomed. Eng. 28(8), 1043–1058 (2000). https://doi.org/10.1114/1.1313771

    Article  Google Scholar 

  5. X. Li, J. Dunn, D. Salins, G. Zhou, W. Zhou, S.M. Schüssler-Fiorenza Rose, et al., Digital health: Tracking physiomes and activity using wearable biosensors reveals useful health-related information. PLoS Biol. 15(1), e2001402 (2017). https://doi.org/10.1371/journal.pbio.2001402

    Article  Google Scholar 

  6. R. Voelker, Smart watch detects seizures. JAMA 319(11), 1086 (2018). https://doi.org/10.1001/jama.2018.1809

    Article  Google Scholar 

  7. G.H. Tison, J.M. Sanchez, B. Ballinger, A. Singh, J.E. Olgin, M.J. Pletcher, et al., Passive detection of atrial fibrillation using a commercially available smartwatch. JAMA Cardiol. (2018). https://doi.org/10.1001/jamacardio.2018.0136

    Article  Google Scholar 

  8. J.E. Dimsdale, Psychological stress and cardiovascular disease. J. Am. Coll. Cardiol. 51(13), 1237–1246 (2008)

    Article  Google Scholar 

  9. D.M. Lloyd-Jones, Y. Hong, D. Labarthe, et al., Defining and setting national goals for cardiovascular health promotion and disease reduction: The American Heart Association’s strategic impact goal through 2020 and beyond. Circulation 121, 586–613 (2010)

    Article  Google Scholar 

  10. B.H. Marcus, L.H. Forsyth, E.J. Stone, P.M. Dubbert, T.L. McKenzie, A.L. Dunn, S.N. Blair, Physical activity behavior change: Issues in adoption and maintenance. Health Psychol. 19, 32–41 (2000)

    Article  Google Scholar 

  11. P. Salmon, Effects of physical exercise on anxiety, depression, and sensitivity to stress: A unifying theory. Clin. Psychol. Rev. 21(1), 33–61 (2001)

    Article  Google Scholar 

  12. D. Scully, J. Kremer, M.M. Meade, R. Graham, K. Dudgeon, Physical exercise and psychological well-being: A critical review. Br. J. Sports Med. 32(2), 111–120 (1998)

    Article  Google Scholar 

  13. J.M. Jakicic, K.K. Davis, R.J. Rogers, W.C. King, M.D. Marcus, D. Helsel, et al., Effect of wearable technology combined with a lifestyle intervention on long-term weight loss. JAMA 316(11), 1161 (2016). https://doi.org/10.1001/jama.2016.12858

    Article  Google Scholar 

  14. S.S. Gollamudi, E.J. Topol, N.E. Wineinger, A framework for smartphone-enabled, patient-generated health data analysis. PeerJ 4, e2284 (2016). https://doi.org/10.7717/peerj.2284

    Article  Google Scholar 

  15. S.R. Steinhubl, J. Waalen, A.M. Edwards, L.M. Ariniello, R.R. Mehta, G.S. Ebner, E.J. Topol, Effect of a home-based wearable continuous ECG monitoring patch on detection of undiagnosed atrial fibrillation. JAMA 320(2), 146 (2018). https://doi.org/10.1001/jama.2018.8102

    Article  Google Scholar 

  16. A. Oguntimilehin, O.B. Abiola, O.A. Adeyemo, A clinical decision support system for managing stress. J. Emerg. Trends Comput. Inf. Sci 6(8), 436–442 (2015)

    Google Scholar 

  17. P.M. Gollwitzer, P. Sheeran, Implementation intentions and goal achievement: A meta-analysis of effects and processes. Adv. Exp. Soc. Psychol. 38, 69–119 (2006). https://doi.org/10.1016/S0065-2601(06)38002-1

    Article  Google Scholar 

  18. A. Prestwich, M. Perugini, R. Hurling, Can implementation intentions and text messages promote brisk walking? A randomized trial. Health Psychol. 29(1), 40–49 (2010a). https://doi.org/10.1037/a0016993

    Article  Google Scholar 

  19. A. Prestwich, I. Kellar, How can the impact of implementation intentions as a behavior change intervention be improved? Eur. Rev. Appl. Psychol 64(1), 35–41 (2014a). https://doi.org/10.1016/j.erap.2010.03.003

    Article  Google Scholar 

  20. P. Pirolli, S. Mohan, A. Venkatakrishnan, L. Nelson, M. Silva, A. Springer, Implementation intention and reminder effects on behavior change in a mobile health system: A predictive cognitive model. J. Med. Internet Res. 19(11), e397 (2017). https://doi.org/10.2196/jmir.8217

    Article  Google Scholar 

  21. A. Prestwich, M. Perugini, R. Hurling, Can implementation intentions and text messages promote brisk walking? A randomized trial. Health Psychol. 29(1), 40–49 (2010b Jan). https://doi.org/10.1037/a0016993

    Article  Google Scholar 

  22. A. Prestwich, I. Kellar, How can the impact of implementation intentions as a behavior change intervention be improved? Eur. Rev. Appl. Psychol 64(1), 35–41 (2014b Jan). https://doi.org/10.1016/j.erap.2010.03.003

    Article  Google Scholar 

  23. D.C. Mohr, K. Cheung, S.M. Schueller, C.H. Brown, N. Duan, Continuous evaluation of evolving behavioral intervention technologies. Am. J. Prev. Med. 45(4), 517–523 (2013)

    Article  Google Scholar 

  24. C.M. Kennedy, J. Powell, T.H. Payne, J. Ainsworth, A. Boyd, I. Buchan, Active assistance technology for health-related behavior change: An interdisciplinary review. J. Med. Internet Res. 14(3), 80 (2012)

    Article  Google Scholar 

  25. C. Skinner, J. Finkelstein, in Proceedings of the IASTED International Conference on Telehealth/Assistive Technologies. Review of mobile phone use in preventive medicine and disease management. (ACTA Press, 2008), pp. 180–189

    Google Scholar 

  26. C.A. Depp, B. Mausbach, E. Granholm, V. Cardenas, D. Ben-Zeev, T.L. Patterson, D.V. Jeste, Mobile interventions for severe mental illness: Design and preliminary data from three approaches. J. Nerv. Ment. Dis. 198(10), 715–721 (2010)

    Article  Google Scholar 

  27. M. Lin, Z. Mahmooth, N. Dedhia, R. Frutchey, C.E. Mercado, D.H. Epstein, et al., Tailored, interactive text messages for enhancing weight loss among African American adults: The TRIMM randomized controlled trial. Am. J. Med. 128(8), 896–904 (2015). https://doi.org/10.1016/j.amjmed.2015.03.013

    Article  Google Scholar 

  28. L. Piwek, D.A. Ellis, S. Andrews, A. Joinson, The rise of consumer health wearables: Promises and barriers. PLoS Med 13(2), e1001953 (2016)

    Article  Google Scholar 

  29. P.J. Teixeira, E.V. Carraça, M.M. Marques, H. Rutter, J.-M. Oppert, I.D. Bourdeaudhuij, J. Lakerveld, J. Brug, Successful behavior change in obesity interventions in adults: a systematic review of self-regulation mediators. BMC Med 13(1), 84 (2015)

    Article  Google Scholar 

  30. B. Chen, S. Patel, L.D. Toffola, P. Bonato, Proceedings of the 2nd Conference on Wireless Health. Long-term monitoring of COPD using wearable sensors. (2011), p. 19

    Google Scholar 

  31. A. Lange, J.P. van de Ven, B. Schrieken, Interapy: Treatment of post-traumatic stress via the internet. Cogn. Behav. Ther 32(3), 110–124 (2003)

    Article  Google Scholar 

  32. A.C. King, E.B. Hekler, L.A. Grieco, S.J. Winter, J.L. Sheats, M.P. Buman, B. Banerjee, T.N. Robinson, J. Cirimele, Harnessing different motivational frames via mobile phones to promote daily physical activity and reduce sedentary behavior in aging adults. Plos ONE 8(4), e62613 (2013)

    Article  Google Scholar 

  33. S.J. Winter, J.L. Sheats, A.C. King, The use of behavior change techniques and theory in technologies for cardiovascular disease prevention and treatment in adults: A comprehensive review. Prog. Cardiovasc. Dis. 58(6), 605–612 (2016)

    Article  Google Scholar 

  34. D. Ben-Zeev, K.E. Davis, S. Kaiser, I. Krzsos, R.E. Drake, Mobile technologies among people with serious mental illness: Opportunities for future services. Adm. Policy Ment. Health Ment. Health Serv. Res. 40(4), 340–343 (2013)

    Article  Google Scholar 

  35. C.A. Christmann, A. Hoffmann, G. Bleser, Stress management apps with regard to emotion-focused coping and behavior change techniques: A content analysis. JMIR Mhealth Uhealth 5(2), e22 (2017)

    Article  Google Scholar 

  36. E.B. Litvin, A.M. Abrantes, R.A. Brown, Computer and mobile technology-based interventions for substance use disorders: An organizing framework. Addict. Behav. 38(3), 1747–1756 (2013)

    Article  Google Scholar 

  37. P. Domingos, A. Pedro, A few useful things to know about machine learning. Commun. ACM 55(10), 78 (2012)

    Article  Google Scholar 

  38. D. Castelvecchi, Can we open the black box of AI? Nature 538(7623), 20–23 (2016)

    Article  Google Scholar 

  39. S.A. Murphy, A generalization error for Q-learning. J. Mach. Learn. Res 6(Jul), 1073–1097 (2005a)

    MathSciNet  MATH  Google Scholar 

  40. Y.K. Cheung, B. Chakraborty, K.W. Davidson, Sequential multiple assignment randomized trial (SMART) with adaptive randomization for quality improvement in depression treatment program. Biometrics 71(2), 450–459 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. P.J. Schulte, A.A. Tsiatis, E.B. Laber, M. Davidian, Q-and A-learning methods for estimating optimal dynamic treatment regimes. Stat. Sci 29(4), 640 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. S.A. Murphy, An experimental design for the development of adaptive treatment strategies. Stat. Med. 24(10), 1455–1481 (2005b)

    Article  MathSciNet  Google Scholar 

  43. L.I. Wagner, J. Duffecy, F. Penedo, D.C. Mohr, D. Cella, Coping strategies tailored to the management of fear of recurrence and adaptation for E-health delivery: The FoRtitude intervention. Cancer 123(6), 906–910 (2017)

    Article  Google Scholar 

  44. P. Klasnja, E.B. Hekler, S. Shiffman, A. Boruvka, D. Almirall, A. Tewari, S.A. Murphy, Microrandomized trials: An experimental design for developing just-in-time adaptive interventions. Health Psychol. 34(Suppl), 1220–1228 (2015). https://doi.org/10.1037/hea0000305

    Article  Google Scholar 

  45. R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, N. Elhadad, in Proceedings of KDD. Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. (2015)

    Google Scholar 

  46. Z.C. Lipton, in Proceedings of ICML Workshop on Human Interpretability in Machine Learning (WHI 2016). The mythos of model interpretability. (2016)

    Google Scholar 

  47. P.S. Hsueh, S. Das, S. Dey, T. Wetter, in Proceedings of MEDINFO. Making sense of Patient Generated Health Data (PGHD) with better interpretability: The transition from more to better. (2017a)

    Google Scholar 

  48. X. Hu, P.-Y.S. Hsueh, C.-H. Chen, K.M. Diaz, Y.-K.K. Cheung, M. Qian, A first step towards behavioral coaching for managing stress: A case study on optimal policy estimation with multi-stage threshold Q-learning, in AMIA ... Annual Symposium Proceedings. AMIA Symposium, 2017, (2017), pp. 930–939. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/29854160

    Google Scholar 

  49. X. Hu, P.S. Hsueh, C. Chen, M. Qian, F.E. Parsons, I. Ensari, K. Daz, Y.K. Ceung, An interpretable health behavioral policy for mobile device users. IBM J. Res. Dev. 62(1) (Jan 2018). https://doi.org/10.1147/JRD.2017.2769320

    Article  Google Scholar 

  50. K.A. Bartholomew, The perspective of a practitioner, in Knowledge Coupling, (Springer, New York, 1991), pp. 235–277

    Chapter  Google Scholar 

  51. P.S. Hsueh, H. Chang, S. Ramakrishnan, Next-generation wellness: A technology model for personalizing healthcare, in Healthcare Information Management, 4th edn., (Springer, Cham, 2016)

    Google Scholar 

  52. P.S. Hsueh, F. Martin-Sanchez, K. Kim, S. Peterson, S. Dey, B. Yang, Y-K. Cheung, T. Wetter (2017b), Secondary Use of Patient Generated Health Data (PGHD), IMIA Yearbook Review 2017

    Google Scholar 

  53. Z. Hu, X. Ma, Z. Liu, E. Hovy, E. Xing, Harnessing deep neural networks with logic rules, in Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), (2016), pp. 2410–2420. https://doi.org/10.18653/v1/P16-1228

    Chapter  Google Scholar 

  54. D. Andrzejewski, X. Zhu, M. Craven, B. Recht, in IJCAI. A framework for incorporating general domain knowledge into Latent Dirichlet Allocation using first-order logic. (2011a), pp. 1171–1177

    Google Scholar 

  55. D. Andrzejewski, X. Zhu, M. Craven, B. Recht, A framework for incorporating general domain knowledge into Latent Dirichlet Allocation using first-order logic. IJCAI 2011, 1171–1177 (2011b)

    Google Scholar 

  56. J. Mei, H. Liu, X. Li, G. Xie, Y. Yu, in MedInfo. A decision fusion framework for treatment recommendation system. (2015), pp. 300–304

    Google Scholar 

  57. D.E. Warburton, C.W. Nicol, S.S. Bredin, Health benefits of physical activity: The evidence. Can. Med. Assoc. J. 174(6), 801–809 (2006)

    Article  Google Scholar 

  58. M.M. Burg, J.E. Schwartz, I.M. Kronish, K.M. Diaz, C. Alcantara, J. Duer-Hefele, K.W. Davidson, Does stress result in you exercising less? Or does exercising result in you being less stressed? Or is it both? Testing the bi-directional stress-exercise association at the group and person (N of 1) level. Ann. Behav. Med. 51(6), 799–809 (2017)

    Article  Google Scholar 

  59. W.T. Riley, D.E. Rivera, A.A. Atienza, W. Nilsen, S.M. Allison, R. Mermelstein, Health behavior models in the age of mobile interventions: Are our theories up to the task? Transl. Behav. Med. 1(1), 53–71 (2011)

    Article  Google Scholar 

  60. J.M. Smyth, S.A. Wonderlich, M.J. Sliwinski, R.D. Crosby, S.G. Engel, J.E. Mitchell, R.M. Calogero, Ecological momentary assessment of affect, stress, and binge-purge behaviors: Day of week and time of day effects in the natural environment. Int. J. Eat. Disord. 42(5), 429–436 (2009)

    Article  Google Scholar 

  61. S. Shiffman, A.A. Stone, M.R. Hufford, Ecological momentary assessment. Annu. Rev. Clin. Psychol. 4, 1–32 (2008)

    Article  Google Scholar 

  62. K.E. Heron, J.M. Smyth, Ecological momentary interventions: Incorporating mobile technology into psychosocial and health behavior treatments. Br. J. Health Psychol. 15(1), 1–39 (2010)

    Article  Google Scholar 

  63. Y.K. Cheung, P.-Y.S. Hsueh, M. Qian, S. Yoon, L. Meli, K.M. Diaz, et al., Are nomothetic or ideographic approaches superior in predicting daily exercise behaviors? Methods Inf. Med. 56(06), 452–460 (2017)

    Article  Google Scholar 

  64. R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (MIT press, Cambridge, 2018)

    MATH  Google Scholar 

  65. S.A. Murphy, M.J. van der Laan, J.M. Robins, et al., Marginal mean models for dynamic regimes. J. Am. Stat. Assoc. 96(456), 1410–1423 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  66. M. Zhang, D.E. Schaubel, Double-robust semiparametric estimator for differences in restricted mean lifetimes in observational studies. Biometrics 68(4), 999–1009 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  67. Y. Zhao, D. Zeng, A.J. Rush, M.R. Kosorok, Estimating individualized treatment rules using outcome weighted learning. J. Am. Stat. Assoc. 107(499), 1106–1118 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  68. X. Hu, P.-Y. Hsueh, C.-H. Chen, K.M. Diaz, F.E. Parsons, I. Ensari, et al., An interpretable health behavioral intervention policy for mobile device users. IBM J. Res. Dev. 62(1), 4–1 (2018)

    Article  Google Scholar 

  69. X. Hu, P.-Y.S. Hsueh, C.-H. Chen, K.M. Diaz, Y.-K.K. Cheung, M. Qian, in AMIA Annual Symposium Proceedings. A first step towards behavioral coaching for managing stress: A case study on optimal policy estimation with multi-stage threshold Q-learning. (American Medical Informatics Association, 2017), p. 930

    Google Scholar 

  70. Y. Cheung, P.-Y. Hsueh, I. Ensari, J. Willey, K. Diaz, Quantile coarsening analysis of high-volume wearable activity data in a longitudinal observational study. Sensors 18(9), 3056 (2018)

    Article  Google Scholar 

  71. M. Behrends, T. Kupka, R. Schmeer, I. Meyenburg-Altwarg, M. Marschollek, Knowledge transfer in health care through digitally collecting learning experiences – results of Witra care. Stud. Health Technol. Inform. 225, 287–291 (2016)

    Google Scholar 

  72. D. Schaeffer, D. Vogt, E-M. Berens, K. Hurrelmann. Gesundheitskompetenz der Bevölkerung in Deutschland: Ergebnisbericht, Universität Bielefeld, Fakultät für Gesundheitswissenschaften (2016)

    Google Scholar 

  73. I. Kickbusch, Health Literacy. The Solid Facts (World Health Organization, Geneva, 2013)

    Google Scholar 

  74. G. Irving, A.L. Neves, H. Dambha-Miller, A. Oishi, H. Tagashira, A. Verho, J. Holden, International variations in primary care physician consultation time: A systematic review of 67 countries. BMJ Open 7, e017902 (2017)

    Article  Google Scholar 

  75. D.H. Schunk, Learning Theories: An Educational Perspective (Macmillan, New York, 1991)

    Google Scholar 

  76. T.M. Duffy, D. Jonassen, Constructivism: New implications for instructional technology? Educ. Technol. 31(5), 3–12 (1991)

    Google Scholar 

  77. D.J. Cunningham, Assessing constructions and constructing assessments: A dialogue. Educ. Technol. 31(5), 13–17 (1991)

    Google Scholar 

  78. P.A. Ertmer, T.J. Newby, Behaviorism, cognitivism, constructivism: Comparing critical features from an instructional design perspective. Perform. Improv. Q 26, 43–71 (2013)

    Article  Google Scholar 

  79. A.T. Corbett, J.R. Anderson, LISP intelligent tutoring system research in skill acquisition, in Computer Assisted Instruction and Intelligent Tutoring Systems: Shared Goals and Complementary Approaches, ed. by J. Larkin, R. Chabay, (Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1992), pp. 73–110

    Google Scholar 

  80. J. Anderson, Skill acquisition and the LISP tutor. Cogn. Sci. 13, 467–505 (1989)

    Article  Google Scholar 

  81. J. Anderson, A.T. Corbett, K.R. Koedinger, R. Pelletier, Cognitive tutors: Lessons learned. J. Learn. Sci. 4, 167–207 (1995)

    Article  Google Scholar 

  82. R. Nkambou, J. Bourdeau, R. Mizoguchi (eds.), Advances in Intelligent Tutoring Systems (Springer, Berlin, 2010), p. 4

    MATH  Google Scholar 

  83. I. Goldstein, S. Papert, Artificial intelligence, language, and the study of knowledge. Cogn. Sci 1, 84–123 (1977)

    Article  Google Scholar 

  84. M. Minsky, Logical versus analogical or symbolic versus connectionist or neat versus scruffy. AI Mag. 12, 34–51 (1991)

    Google Scholar 

  85. L. Faria, A. Silva, Z. Vale, A. Marques, Training control centers’ operators in incident diagnosis and power restoration using intelligent tutoring systems. IEEE Trans. Learn. Technol 2, 135–147 (2009)

    Article  Google Scholar 

  86. Z.A. Vale, A. Machado, M. Fernanda Fernandes, C. Ramos, Sparse: An intelligent alarm processor and operator assistant. IEEE Expert 12, 86–93 (1997)

    Article  Google Scholar 

  87. G. Acampora, J.M. Cadenas, V. Loia, E.M. Ballester, A multi-agent memetic system for human-based knowledge selection. IEEE Trans. Syst. Man Cybern. A 41, 946–960 (2011)

    Article  Google Scholar 

  88. Z. Yu, Y. Nakamura, D. Zhang, S. Kajita, K. Mase, Content provisioning for ubiquitous learning. IEEE Pervasive Comput. 7, 62–70 (2008)

    Article  Google Scholar 

  89. F. Colace, M. de Santo, Ontology for E-learning: A Bayesian approach. IEEE Trans. Educ. 53, 223–233 (2010)

    Article  Google Scholar 

  90. P. Verma, S.K. Sood, S. Kalra, Student career path recommendation in engineering stream based on three-dimensional model. Comput. Appl. Eng. Educ. 25, 578–593 (2017)

    Article  Google Scholar 

  91. G. Tsaganou, M. Grigoriadou, T. Cavoura, D. Koutra, Evaluating an intelligent diagnosis system of historical text comprehension. Expert Syst. Appl. 25, 493–502 (2003)

    Article  Google Scholar 

  92. O. Taylan, B. Karagözoğlu, An adaptive neuro-fuzzy model for prediction of student’s academic performance. Comput. Ind. Eng. 57, 732–741 (2009)

    Article  Google Scholar 

  93. K. Chrysafiadi, M. Virvou, Fuzzy logic for adaptive instruction in an E-learning environment for computer programming. IEEE Trans. Fuzzy Syst. 23, 164–177 (2015)

    Article  Google Scholar 

  94. M.L. Espinosa, N.M. Sánchez, Z.Z. García Valdivia, in Proceedings of the 2007 Euro American conference on Telematics and information systems, ed. by do R.P.C. Nascimento. Concept maps and case-based reasoning. (ACM, New York, NY, 2007), p. 1

    Google Scholar 

  95. A. Iqbal, R. Oppermann, A. Patel, A classification of evaluation methods for intelligent tutoring systems, in Software-Ergonomie ‘99: Design von Informationswelten, ed. by U. Arend, E. Eberleh, K. Pitschke, (Vieweg+ Teubner Verlag, Wiesbaden, 1999), pp. 169–181

    Chapter  Google Scholar 

  96. A.-M. Kamin, Beruflich Pflegende als Akteure in digital unterstützten Lernwelten (Springer Fachmedien Wiesbaden, Wiesbaden, 2013)

    Book  Google Scholar 

  97. M. Marschollek, C. Barthel, M. Behrends, R. Schmeer, I. Meyenburg-Altwarg, M. Becker, Smart glasses in nursing training - redundant gadget or precious tool? A pilot study. Stud. Health Technol. Inform. 225, 377–381 (2016)

    Google Scholar 

  98. The Federal Statistical Office (2015), Pflegestatistik 2013 – Pflege im Rahmen der Pflegeversicherung, Wiesbaden. Online Available: https://www.destatis.de/DE/Publikationen/Thematisch/Gesundheit/Pflege/PflegeDeutschlandergebnisse5224001139004.pdf?__blob= publicationFile. Accessed on: Dez. 11 2018

  99. M. Novak, C. Guest, Application of a multidimensional caregiver burden inventory. The Gerontologist 29, 798–803 (1989)

    Article  Google Scholar 

  100. Second Bill to Strengthen Long-Term Care (2015), https://www.bundesgesundheitsmini sterium.de/topics/long-term-care/second-bill-to-strengthen-long-term-care.html. Accessed 12 Dec 2018

  101. D. Wolff, M. Behrends, M. Gerlach, T. Kupka, M. Marschollek, Personalized knowledge transfer for caregiving relatives. Stud. Health Technol. Inform. 247, 780–784 (2018)

    Google Scholar 

  102. M. Rutz, M. Behrends, D. Wolff, T. Kupka, M-L. Dierks (2018) Hallo Du, ich bin Mo – Der Dialog als personalisierte Form der Wissensvermittlung in einem mobilen Assistenzsystem. In Zukunft der Pflege: Tagungsband der 1. Clusterkonferenz 2018, Boll S, Hein A, Heuten W & Wolf-Ostermann K., eds. ISBN 978-3-8142-2367-4

    Google Scholar 

  103. C.A. Taylor, J.M. Bell, M.J. Breiding, L. Xu, Traumatic brain injury–related emergency department visits, hospitalizations, and deaths — United States, 2007 and 2013. MMWR Surveill. Summ 66(SS-9), 1–16 (2017). https://doi.org/10.15585/mmwr.ss6609a1

    Article  Google Scholar 

  104. DVBIC. Defense and Veterans Brain Injury Center. DoD Worldwide Numbers for TBI (2017). https://dvbic.dcoe.mil/dod-worldwide-numbers-tbi

  105. Full Text of H.R. 4310: National Defense Authorization Act for Fiscal Year 2013. GovTrack. Retrieved 13 Oct 2018

    Google Scholar 

  106. Behaviour change: individual approaches. Public health guideline (2014), https://www.nice.org.uk/guidance/ph49/resources/surveillance-report-2017-behaviour-change-individual-approches-2014-nice-guideline-ph49-4667934061/chapter/How-we-made-the-decision?tab

  107. C. Weng, S.W. Tu, I. Sim, R. Richessond, Formal representation of eligibility criteria: A literature review. J. Biomed. Inform. 43(3), 451–467 (2010)

    Article  Google Scholar 

Download references

Acknowledgment

Theme 2: The projects Witra-Care and Mobile Care Backup (MoCaB) are funded by German Federal Ministry of Education and Research (grant numbers Witra-Care: 16SV6380; MoCaB: 16SV7472).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hsueh, PY.S., Hu, X., Cheung, Y.K., Wolff, D., Marschollek, M., Rogers, J. (2020). Smart Learning Using Big and Small Data for Mobile and IOT e-Health. In: Firouzi, F., Chakrabarty, K., Nassif, S. (eds) Intelligent Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-30367-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30367-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30366-2

  • Online ISBN: 978-3-030-30367-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics