Skip to main content

Surface Elasticity Models: Comparison Through the Condition of the Anti-plane Surface Wave Propagation

  • Chapter
  • First Online:
State of the Art and Future Trends in Material Modeling

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 100))

Abstract

In order to discuss the peculiarities of few models of surface elasticity we consider here the dispersion relations for anti-plane surface waves. We show that the dispersion curves are quite sensitive to the choice of the model. We consider here the linear Gurtin-Murdoch model, strain- and stress-gradient surface elasticity models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achenbach J (1973) Wave Propagation in Elastic Solids. North Holland, Amsterdam

    Google Scholar 

  • Aifantis EC (2016) Internal Length Gradient (ILG) material mechanics across scales and disciplines. In: Bordas SPA, Balint DS (eds) Advances in Applied Mechanics, Elsevier, vol 49, pp 1–110

    Google Scholar 

  • Altenbach H, Eremeyev VA (2011) On the shell theory on the nanoscale with surface stresses. International Journal of Engineering Science 49(12):1294–1301

    Article  CAS  Google Scholar 

  • Altenbach H, Eremeev VA, Morozov NF (2010) On equations of the linear theory of shells with surface stresses taken into account. Mechanics of Solids 45(3):331–342

    Article  Google Scholar 

  • Altenbach H, Eremeyev VA, Morozov NF (2012) Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale. International Journal of Engineering Science 59:83–89

    Article  Google Scholar 

  • Askes H, Aifantis EC (2011) Gradient elasticity in statics and dynamics: An overview of formula- tions, length scale identification procedures, finite element implementations and new results. International Journal of Solids and Structures 48(13):1962–1990

    Article  Google Scholar 

  • Belov PA, Lurie SA, Golovina NY (2019) Classifying the existing continuum theories of ideal-surface adhesion. In: Adhesives and Adhesive Joints in Industry, IntechOpen

    Google Scholar 

  • dell’Isola F, Seppecher P (1997) Edge contact forces and quasi-balanced power. Meccanica 32(1):33–52

    Article  Google Scholar 

  • dell’Isola F, Madeo A, Placidi L (2012a) Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 92(1):52–71

    Article  Google Scholar 

  • dell’Isola F, Seppecher P, Madeo A (2012b) How contact interactions may depend on the shape of Cauchy cuts in nth gradient continua: approach “á la d’alembert”. ZAMP 63(6):1119–1141

    Article  Google Scholar 

  • Duan HL, Wang J, Karihaloo BL (2008) Theory of elasticity at the nanoscale. In: Aref H, van der Giessen E (eds) Advances in Applied Mechanics, Elsevier, vol 42, pp 1–68

    Google Scholar 

  • Eremeyev VA (2016) On effective properties of materials at the nano-and microscales considering surface effects. Acta Mechanica 227(1):29–42

    Article  Google Scholar 

  • Eremeyev VA (2017) On nonlocal surface elasticity and propagation of surface anti-plane waves. In: Altenbach H, Goldstein RV, Murashkin E (eds) Mechanics for Materials and Technologies, Springer, Cham, Advanced Structured Materials, vol 46, pp 153–162

    Google Scholar 

  • Eremeyev VA (2019a) On anti-plane surface wave propagation within the stress-gradient surface elasticity. In: Berezovski A, Soomere T (eds) Applied Wave Mathematics II, Mathematics of Planet Earth, vol 6, Springer, Cham

    Google Scholar 

  • Eremeyev VA (2019b) Strongly anisotropic surface elasticity and antiplane surface waves. Philo- sophical Transactions of the Royal Society A pp 1–14, https://doi.org/10.1098/rsta.2019.0100

    Article  Google Scholar 

  • Eremeyev VA, Sharma BL (2019) Anti-plane surface waves in media with surface structure: Discrete vs. continuum model. International Journal of Engineering Science 143:33–38

    Article  Google Scholar 

  • Eremeyev VA, Rosi G, Naili S (2016) Surface/interfacial anti-plane waves in solids with surface energy. Mechanics Research Communications 74:8–13

    Article  Google Scholar 

  • Eremeyev VA, Cloud MJ, Lebedev LP (2018a) Applications of Tensor Analysis in Continuum Mechanics. World Scientific, New Jersey

    Google Scholar 

  • Eremeyev VA, Rosi G, Naili S (2018b) Comparison of anti-plane surface waves in strain- gradient materials and materials with surface stresses. Mathematics and Mechanics of Solids https://doi.org/10.1177/1081286518769960

    Article  Google Scholar 

  • Eringen AC (2002) Nonlocal Continuum Field Theories. Springer, New York

    Google Scholar 

  • Forest S, Cordero NM, Busso EP (2011) First vs. second gradient of strain theory for capillarity effects in an elastic fluid at small length scales. Computational Materials Science 50(4):1299–1304

    Article  CAS  Google Scholar 

  • de Gennes PG (1981) Some effects of long range forces on interfacial phenomena. J Physique Lettres 42(16):377–379

    Google Scholar 

  • de Gennes PG, Brochard-Wyart F, Quéré D (2004) Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer, New York

    Google Scholar 

  • Georgiadis H, Vardoulakis I, Lykotrafitis G (2000) Torsional surface waves in a gradient-elastic half-space. Wave Motion 31(4):333–348

    Article  Google Scholar 

  • Gourgiotis P, Georgiadis H (2015) Torsional and {SH} surface waves in an isotropic and homogenous elastic half-space characterized by the Toupin–Mindlin gradient theory. International Journal of Solids and Structures 62(0):217–228

    Article  Google Scholar 

  • Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Analysis 57(4):291–323

    Article  Google Scholar 

  • Gurtin ME, Murdoch AI (1978) Surface stress in solids. International Journal of Solids and Structures 14(6):431–440

    Article  Google Scholar 

  • Han Z, Mogilevskaya SG, Schillinger D (2018) Local fields and overall transverse properties of unidirectional composite materials with multiple nanofibers and Steigmann–Ogden interfaces. International Journal of Solids and Structures 147:166–182

    Article  Google Scholar 

  • Israelachvili JN (2011) Intermolecular and Surface Forces, 3rd edn. Academic Press, Amsterdam

    Google Scholar 

  • Javili A, dell’Isola F, Steinmann P (2013a) Geometrically nonlinear higher-gradient elasticity with energetic boundaries. Journal of the Mechanics and Physics of Solids 61(12):2381–2401

    Article  CAS  Google Scholar 

  • Javili A, McBride A, Steinmann P (2013b) Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface, and curve structures at the nanoscale. a unifying review. Applied Mechanics Reviews 65(1):010,802

    Google Scholar 

  • Kushch VI, Mogilevskaya SG, Stolarski HK, Crouch SL (2013) Elastic fields and effective moduli of particulate nanocomposites with the Gurtin-Murdoch model of interfaces. International Journal of Solids and Structures 50(7-8):1141–1153

    Article  CAS  Google Scholar 

  • Laplace PS (1805) Sur l’action capillaire. supplément à la théorie de l’action capillaire. In: Traité de mécanique céleste, vol 4. Supplement 1, Livre X, Gauthier–Villars et fils, Paris, pp 771–777

    Google Scholar 

  • Laplace PS (1806) À la théorie de l’action capillaire. supplément à la théorie de l’action capillaire. In: Traité de mécanique céleste, vol 4. Supplement 2, Livre X, Gauthier–Villars et fils, Paris, pp 909–945

    Google Scholar 

  • Lebedev LP, Cloud MJ, Eremeyev VA (2010) Tensor Analysis with Applications in Mechanics. World Scientific, New Jersey

    Google Scholar 

  • Li Y, Wei PJ, Tang Q (2015) Reflection and transmission of elastic waves at the interface between two gradient-elastic solids with surface energy. European Journal of Mechanics A – Solids 52(C):54–71

    Article  Google Scholar 

  • Liebold C, Müller WH (2015) Are microcontinuum field theories of elasticity amenable to experiments? A review of some recent results. In: Chen GQ, Grinfeld M, Knops R (eds) Differential Geometry and Continuum Mechanics, Springer Proceedings in Mathematics & Statistics, vol 137, Springer, pp 255–278

    Google Scholar 

  • Longley WR, Van Name RG (eds) (1928) The Collected Works of J. Willard Gibbs, PHD., LL.D., vol I Thermodynamics. Longmans, New York

    Google Scholar 

  • Lurie S, Volkov-Bogorodsky D, Zubov V, Tuchkova N (2009) Advanced theoretical and numer- ical multiscale modeling of cohesion/adhesion interactions in continuum mechanics and its applications for filled nanocomposites. Computational Materials Science 45(3):709 – 714

    Article  CAS  Google Scholar 

  • Lurie S, Belov P, Altenbach H (2016) Classification of gradient adhesion theories across length scale. In: Altenbach H, Forest S (eds) Generalized Continua as Models for Classical and Advanced Materials, Advanced Structured Materials, vol 42, Springer, Cham, pp 261–277

    Google Scholar 

  • Maugin GA (2017) Non-Classical Continuum Mechanics: A Dictionary. Springer, Singapore

    Google Scholar 

  • Nazarenko L, Stolarski H, Altenbach H (2016) Effective properties of short-fiber composites with gurtin-murdoch model of interphase. International Journal of Solids and Structures 97:75–88

    Article  Google Scholar 

  • Nazarenko L, Stolarski H, Altenbach H (2018) Effective properties of particulate composites with surface-varying interphases. Composites Part B: Engineering 149:268–284

    Article  CAS  Google Scholar 

  • Placidi L, Rosi G, Giorgio I, Madeo A (2014) Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Mathematics and Mechanics of Solids 19(5):555–578

    Article  Google Scholar 

  • Poisson SD (1831) Nouvelle théorie de l’action capillaire. Bachelier Père et Fils, Paris

    Google Scholar 

  • Rosi G, Nguyen VH, Naili S (2015) Surface waves at the interface between an inviscid fluid and a dipolar gradient solid. Wave Motion 53(0):51–65

    Article  Google Scholar 

  • Ru CQ (2010) Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with clarification of its related versions. Science China Physics, Mechanics and Astronomy 53(3):536–544

    Article  Google Scholar 

  • Ru CQ (2016) A strain-consistent elastic plate model with surface elasticity. Continuum Mechanics and Thermodynamics 28(1-2):263–273

    Article  Google Scholar 

  • Simmonds JG (1994) A Brief on Tensor Analysis, 2nd edn. Springer, New Yourk

    Book  Google Scholar 

  • Steigmann DJ, Ogden RW (1997) Plane deformations of elastic solids with intrinsic boundary elasticity. Proceedings of the Royal Society A 453(1959):853–877

    Article  Google Scholar 

  • Steigmann DJ, Ogden RW (1999) Elastic surface-substrate interactions. Proceedings of the Royal Society A 455(1982):437–474

    Article  Google Scholar 

  • Vardoulakis I, Georgiadis HG (1997) SH surface waves in a homogeneous gradient-elastic half-space with surface energy. Journal of Elasticity 47(2):147–165

    Google Scholar 

  • Wang J, Huang Z, Duan H, Yu S, Feng X, Wang G, Zhang W, Wang T (2011) Surface stress effect in mechanics of nanostructured materials. Acta Mech Solida Sinica 24:52–82

    Article  CAS  Google Scholar 

  • Xu L, Wang X, Fan H (2015) Anti-plane waves near an interface between two piezoelectric half-spaces. Mechanics Research Communications 67:8–12

    Article  Google Scholar 

  • Yerofeyev VI, Sheshenina OA (2005) Waves in a gradient-elastic medium with surface energy. Journal of Applied Mathematics and Mechanics 69(1):57 – 69

    Article  Google Scholar 

  • Young T (1805) An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London 95:65–87

    Google Scholar 

  • Zemlyanova AY, Mogilevskaya SG (2018) Circular inhomogeneity with Steigmann–Ogden interface: Local fields, neutrality, and Maxwell’s type approximation formula. International Journal of Solids and Structures 135:85–98

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor A. Eremeyev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eremeyev, V.A. (2019). Surface Elasticity Models: Comparison Through the Condition of the Anti-plane Surface Wave Propagation. In: Altenbach, H., Öchsner, A. (eds) State of the Art and Future Trends in Material Modeling . Advanced Structured Materials, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-030-30355-6_5

Download citation

Publish with us

Policies and ethics