Skip to main content

Additive Manufacturing: A Review of the Influence of Building Orientation and Post Heat Treatment on the Mechanical Properties of Aluminium Alloys

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 100))

Abstract

Selective laser melting is one of the powder bed-based processes that allows a layered fabrication of components, which has become the most widely utilized additive manufacturing technique for metal processing. The ability to create futuristic designs and non-standard topology-optimized structures is one of the biggest advantages of additive manufacturing. On the other hand, one of the major challenges is to account for the anisotropic and inhomogeneous material properties. This work presents an overview of the most relevant studies, concerning the influence of building directions and post heat treatments on the mechanical properties of selective laser melted aluminium alloys.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aboulkhair NT, Everitt NM, Ashcroft I, Tuck C (2014) Reducing porosity in alsi10mg parts processed by selective laser melting. Additive Manufacturing 1-4:77–86

    Article  Google Scholar 

  • Aboulkhair NT, Stephens A, Maskery I, Tuck C, Ashcroft I, EverittNM(2015) Mechanical properties of selective laser melted alsi10mg: Nano, micro, and macro properties. In: Solid Freeform Fabrication Symposium, pp 1026–1035

    Google Scholar 

  • Aboulkhair NT, Maskery I, Tuck C, Ashcroft I, Everitt NM (2016a) Improving the fatigue behaviour of a selectively laser melted aluminium alloy: Influence of heat treatment and surface quality. Materials & Design 104:174–182

    Google Scholar 

  • Aboulkhair NT, Maskery I, Tuck C, Ashcroft I, Everitt NM (2016b) The microstructure and mechanical properties of selectively laser melted alsi10mg: The effect of a conventional t6-like heat treatment. Materials Science and Engineering: A 667:139–146

    Article  CAS  Google Scholar 

  • Aversa A, Lorusso M, Trevisan F, Ambrosio E, Calignano F, Manfredi D, Biamino S, Fino P, Lombardi M, Pavese M (2017) Effect of process and post-process conditions on the mechanical properties of an a357 alloy produced via laser powder bed fusion. Metals 7:68

    Article  CAS  Google Scholar 

  • Bagherifard S, Beretta N, Monti S, Riccio M, Bandini M, Guagliano M (2018) On the fatigue strength enhancement of additive manufactured alsi10mg parts by mechanical and thermal post-processing. Materials & Design 145:28–41

    Google Scholar 

  • Beese AM, Carroll BE (2015) Review of mechanical properties of ti-6al-4v made by laser-based additive manufacturing using powder feedstock. Jom 68:724–734

    Article  CAS  Google Scholar 

  • Bikas H, Stavropoulos P, Chryssolouris G (2015) Additive manufacturing methods and modelling approaches: a critical review. The International Journal of Advanced Manufacturing Technology 83(1-4):389–405

    Article  Google Scholar 

  • Buchbinder D (2013) Selective laser melting von aluminiumgusslegierungen. Dissertation, RWTH Aachen

    Google Scholar 

  • Buchbinder D, MainersW,Wissenbach K, Müller-Lohmeier K, Brandl E, Skrynecki N (2009) Rapid manufacturing of aluminium parts for serial production via selective laser melting (slm), in 4th international conference on rapid manufacturing

    Google Scholar 

  • Buchbinder D, Meiners W, Wissenbach K, Poprawe R (2015) Selective laser melting of aluminum die-cast alloy—correlations between process parameters, solidification conditions, and resulting mechanical properties. Journal of Laser Applications 27(S2):S29,205

    Article  Google Scholar 

  • Buchmayr B, Panzl G, Walzl A, Wallis C (2017) Laser powder bed fusion - materials issues and optimized processing parameters for tool steels, AlSiMg- and CuCrZr-alloys. Advanced Engineering Materials 19(4):n/a

    Article  CAS  Google Scholar 

  • Cherry JA, Davies HM, Mehmood S, Lavery NP, Brown SGR, Sienz J (2014) Investigation into the effect of process parameters on microstructural and physical properties of 316l stainless steel parts by selective laser melting. The International Journal of Advanced Manufacturing Technology 76(5-8):869–879

    Article  Google Scholar 

  • Cloots M, Kunze K, Uggowitzer PJ, Wegener K (2016) Microstructural characteristics of the nickel-based alloy in738lc and the cobalt-based alloy mar-m509 produced by selective laser melting. Materials Science and Engineering: A 658:68–76

    Article  CAS  Google Scholar 

  • Dai D, Gu D (2015) Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of tic/alsi10mg powder. International Journal of Machine Tools and Manufacture 88:95–107

    Article  Google Scholar 

  • Dai D, Gu D, Zhang H, Zhang J, Du Y, Zhao T, Hong C, Gasser A, Poprawe R (2018) Heat-induced molten pool boundary softening behavior and its effect on tensile properties of laser additive manufactured aluminum alloy. Vacuum 154:341–350

    Article  CAS  Google Scholar 

  • Frazier WE (2014) Metal additive manufacturing: A review. Journal of Materials Engineering and Performance 23(6):1917–1928

    Article  CAS  Google Scholar 

  • Gong X, Anderson T, Chou K (2014) Review on powder-based electron beam additive manufacturing technology. Manufacturing Review 1

    Article  CAS  Google Scholar 

  • Hafenstein S, Werner E (2019) Pressure dependence of age-hardenability of aluminum cast alloys and coarsening of precipitates during hot isostatic pressing. Materials Science and Engineering: A 757:62–69

    Article  CAS  Google Scholar 

  • Hitzler L, Charles A, Öchsner A (2016a) The influence of post-heat-treatments on the tensile strength and surface hardness of selective laser melted alsi10mg. Defect and Diffusion Forum 370:171–176

    Article  Google Scholar 

  • Hitzler L, Janousch C, Schanz J, Merkel M, Mack F, Öchsner A (2016b) Non-destructive evaluation of alsi10mg prismatic samples generated by selective laser melting: Influence of manufacturing conditions. Materialwissenschaft und Werkstofftechnik 47(5-6):564–581

    Article  CAS  Google Scholar 

  • Hitzler L, Hirsch J, Merkel M, Hall W, Öchsner A (2017a) Position dependent surface quality in selective laser melting. Materialwissenschaft und Werkstofftechnik 48(5):327–334

    Article  Google Scholar 

  • Hitzler L, Janousch C, Schanz J, Merkel M, Heine B, Mack F, Hall W, Öchsner A (2017b) Direction and location dependency of selective laser melted alsi10mg specimens. Journal of Materials Processing Technology 243:48–61

    Article  CAS  Google Scholar 

  • Hitzler L, Williams P, Merkel M, Hall W, Öchsner A (2017c) Correlation between the energy input and the microstructure of additively manufactured cobalt-chromium. Defect and Diffusion Forum 379:157–165

    Article  Google Scholar 

  • Hitzler L, Merkel M, HallW, Öchsner A (2018) A review of metal fabricated with laser- and powderbed based additive manufacturing techniques: Process, nomenclature, materials, achievable properties, and its utilization in the medical sector. Advanced Engineering Materials 20(5)

    Article  CAS  Google Scholar 

  • Lewandowski JJ, Seifi M (2016) Metal additive manufacturing: A review of mechanical properties. Annual Review of Materials Research 46(1):151–186

    Article  CAS  Google Scholar 

  • Montero-Sistiaga ML, Mertens R,Vrancken B,Wang X,Van Hooreweder B, Kruth JP,Van Humbeeck J (2016) Changing the alloy composition of al7075 for better processability by selective laser melting. Journal of Materials Processing Technology 238:437–445

    Article  CAS  Google Scholar 

  • Ngnekou JND, Nadot Y, Henaff G, Nicolai J, Ridosz L (2017) Influence of defect size on the fatigue resistance of alsi10mg alloy elaborated by selective laser melting (slm). Procedia Structural Integrity 7:75–83

    Article  Google Scholar 

  • Ngnekou JND, Henaff G, Nadot Y, Nicolai J, Ridosz L (2018) Fatigue resistance of selectively laser melted aluminum alloy under t6 heat treatment. Procedia Engineering 213:79–88

    Article  CAS  Google Scholar 

  • Prashanth KG, Eckert J (2017) Formation of metastable cellular microstructures in selective laser melted alloys. Journal of Alloys and Compounds 707:27–34

    Article  CAS  Google Scholar 

  • Qiu C, Adkins NJE, Attallah MM (2013) Microstructure and tensile properties of selectively lasermelted and of hiped laser-melted ti–6al–4v. Materials Science and Engineering: A 578:230–239

    Article  CAS  Google Scholar 

  • Rashid R, Masood SH, Ruan D, Palanisamy S, Rahman Rashid RA, Elambasseril J, Brandt M (2018) Effect of energy per layer on the anisotropy of selective laser melted alsi12 aluminium alloy. Additive Manufacturing 22:426–439

    Article  CAS  Google Scholar 

  • Read N, Wang W, Essa K, Attallah MM (2015) Selective laser melting of alsi10mg alloy: Process optimisation and mechanical properties development. Materials & Design (1980-2015) 65:417–424

    Google Scholar 

  • Reschetnik W, Brüggemann JP, Aydinöz ME, Grydin O, Hoyer KP, Kullmer G, Richard HA (2016) Fatigue crack growth behavior and mechanical properties of additively processed en aw-7075 aluminium alloy. Procedia Structural Integrity 2:3040–3048

    Article  Google Scholar 

  • Sert E, Hitzler L, Merkel M, Öchsner A (2018) Entwicklung von topologieoptimierten adapterelementen für die fertigung mittels additiver verfahren: Vereinigung von reinelektrischem antriebsstrang mit konventionellem chassis. Materialwissenschaft und Werkstofftechnik 49(5):674–682

    Article  Google Scholar 

  • Sert E, Hitzler L, Heine B, Merkel M, Werner A, Öchsner A (2019a) Influence of heat treatment on the microstructure and hardness of additively manufactured alsi10mg samples. Practical Metallography

    Google Scholar 

  • Sert E, Schuch E, Öchsner A, Hitzler L, Werner E, Merkel M (2019b) Tensile strength performance with determination of the poisson‘s ratio of additively manufactured alsi10mg samples. Materialwissenschaft und Werkstofftechnik 50(5):539–545

    Article  CAS  Google Scholar 

  • Shifeng W, Shuai L, Qingsong W, Yan C, Sheng Z, Yusheng S (2014) Effect of molten pool boundaries on the mechanical properties of selective laser melting parts. Journal of Materials Processing Technology 214(11):2660–2667

    Article  CAS  Google Scholar 

  • Singh S, Ramakrishna S, Singh R (2017) Material issues in additive manufacturing: A review. Journal of Manufacturing Processes 25:185–200

    Article  Google Scholar 

  • Spierings AB, Herres N, Levy G (2011) Influence of the particle size distribution on surface quality and mechanical properties in am steel parts. Rapid Prototyping Journal 17(3):195–202

    Article  Google Scholar 

  • Tang M, Pistorius PC (2017) Oxides, porosity and fatigue performance of alsi10mg parts produced by selective laser melting. International Journal of Fatigue 94:192–201

    Article  CAS  Google Scholar 

  • Uzan NE, Shneck R, Yeheskel O, Frage N (2017) Fatigue of alsi10mg specimens fabricated by additive manufacturing selective laser melting (am-slm). Materials Science and Engineering: A 704:229–237

    Article  CAS  Google Scholar 

  • VDI-Richtlinie (2014) Additive fertigungsverfahren grundlagen, begriffe, verfahrensbeschreibungen, 3405

    Google Scholar 

  • VDI-Richtlinie (2017) Additive fertigungsverfahren laser-strahlschmelzen metallischer bauteile materialkenndatenblatt aluminiumlegierung alsi10mg, 3405, blatt 2.1

    Google Scholar 

  • Wang L, Sun J, Zhu X, Cheng L, Shi Y, Guo L, Yan B (2018a) Effects of t2 heat treatment on microstructure and properties of the selective laser melted aluminum alloy samples. Materials (Basel) 11(1)

    Article  CAS  Google Scholar 

  • Wang LF, Sun J, Yu XL, Shi Y, Zhu XG, Cheng LY, Liang HH, Yan B, Guo LJ (2018b) Enhancement in mechanical properties of selectively laser-melted alsi10mg aluminum alloys by t6-like heat treatment. Materials Science and Engineering: A

    Article  CAS  Google Scholar 

  • Wang P, Gammer C, Brenne F, Prashanth KG, Mendes RG, Rümmeli MH, Gemming T, Eckert J, Scudino S (2018c) Microstructure and mechanical properties of a heat-treatable al-3.5cu-1.5mg-1si alloy produced by selective laser melting. Materials Science and Engineering: A 711:562–570

    Article  CAS  Google Scholar 

  • Wong KV, Hernandez A (2012) A review of additive manufacturing. ISRN Mechanical Engineering 2012:1–10

    Article  Google Scholar 

  • Zhang C, Zhu H, Liao H, Cheng Y, Hu Z, Zeng X (2018) Effect of heat treatments on fatigue property of selective laser melting alsi10mg. International Journal of Fatigue 116:513–522

    Article  CAS  Google Scholar 

  • Zhang D (2004) Entwicklung des selective laser melting (slm) für aluminumwerkstoffe. Dissertation, RWTH Aachen

    Google Scholar 

  • Zhao J, Easton M, Qian M, Leary M, Brandt M (2018) Effect of building direction on porosity and fatigue life of selective laser melted alsi12mg alloy. Materials Science and Engineering: A 729:76–85

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Öchsner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sert, E., Öchsner, A., Hitzler, L., Werner, E., Merkel, M. (2019). Additive Manufacturing: A Review of the Influence of Building Orientation and Post Heat Treatment on the Mechanical Properties of Aluminium Alloys. In: Altenbach, H., Öchsner, A. (eds) State of the Art and Future Trends in Material Modeling . Advanced Structured Materials, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-030-30355-6_14

Download citation

Publish with us

Policies and ethics