Skip to main content

Post-exercise Hypotension in the Elderly

  • Chapter
  • First Online:
Hypotensive Syndromes in Geriatric Patients

Abstract

The mechanism of post-exercise hypotension and its relationship with cardiovascular protection is not fully understood. The professional organizations throughout the world recommend regular participation in aerobic exercise for the prevention, treatment, and control of hypertension. Apparently, aerobic exercises promote a greater and longer reduction in BP levels than resistance exercises. However, further studies applying resistance exercise in hypertensive individuals are necessary. Since the combination of resistance and aerobic exercises is the most effective strategy to improve functional independence in the elderly population, the concurrent training strategies are encouraged in order to increase the observed effects. Some physiological mechanisms as well as selected food and substances play a role in the onset of PEH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization 2013. http://www.who.int/gho/ncd/risk_factors/blood_pressure_prevalence/en/.

  2. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das RS, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, sasi CR, Jiménez MC, Jordan JC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Mackey RH, Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, Rosamond WD, Sasson C, Towfighi A, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wilkins JT, Wu JHY, Alger HM, Wong SS, Muntner P, On behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics- 2017 update: a report from the American Heart Association. Circulation. 2017;135:e146–603.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Egan BM, Li J, Hutchison FN, Ferdinand KC. Hypertension in the United States, 1999 to 2012: progress toward healthy people 2020 goals. Circulation. 2014;130:1692–9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yeung PK, Kolathuru SS, Mohammadizadeh S, Akhoundi F, Linderfield B. Adenosine 50-triphosphate metabolism in red blood cells as a potential biomarker for post-exercise hypotension and a drug target for cardiovascular protection. Metabolites. 2018;8:30.

    Article  PubMed Central  CAS  Google Scholar 

  5. Fitzgerald W. Labile hypertension and jogging: new diagnostic tool or spurious discovery? BMJ (Clin Res Ed). 1981;282:542–4.

    Article  CAS  Google Scholar 

  6. Kenney MJ, Seals DR. Postexercise hypotension. Key features, mechanisms, and clinical significance. Hypertension. 1993;22:653–64.

    Article  CAS  PubMed  Google Scholar 

  7. Pescatello LS, MacDonald HV, Ash GI, Lamberti LM, Farquhar WB, Arena R, Johnson BT. Assessing the existing professional exercise recommendations for hypertension: a review and recommendations for future research priorities. Mayo Clin Proc. 2015;90:801–12.

    Article  PubMed  Google Scholar 

  8. Pescatello LS, MacDonald HV, Lamberti L, Johnson BT. Exercise for hypertension: a prescription update integrating existing recommendations with emerging research. Curr Hypertens Rep. 2015;17:87.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pescatello LS, Kulikowich JM. The aftereffects of dynamic exercise on ambulatory blood pressure. Med Sci Sports Exerc. 2001;33:1855–61.

    Article  CAS  PubMed  Google Scholar 

  10. Thompson PD, Crouse SF, Goodpaster B, Kelley D, Moyna N, Pescatello L. The acute versus the chronic response to exercise. Med Sci Sports Exerc. 2001;33 Suppl 6:S438–45; discussion S452–3.

    Article  CAS  PubMed  Google Scholar 

  11. Collier SR, Kanaley JA, Carhart R Jr, Frechette V, Tobin MM, Hall AK, Luckenbaugh AN, Fernhall B. Effect of 4 weeks of aerobic or resistance exercise training on arterial stiffness, blood flow and blood pressure in pre- and stage-1 hypertensives. J Hum Hypertens. 2008;22:678–86.

    Article  CAS  PubMed  Google Scholar 

  12. Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA, American College of Sports Medicine. American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc. 2004;36:533–53.

    Article  PubMed  Google Scholar 

  13. Green DJ, Dawson EA, Groenewoud HM, Jones HJ, Thijssen DH. Is flow-mediated dilation nitric oxide mediated?: a meta-analysis. Hypertension. 2014;63:376–82.

    Article  CAS  PubMed  Google Scholar 

  14. Bruneau ML Jr, Johnson BT, Huedo-Medina TB, Larson KA, Ash GI, Pescatello LS. The blood pressure response to acute and chronic aerobic exercise: a meta-analysis of candidate gene association studies. J Sci Med Sport. 2016;19:424–31.

    Article  PubMed  Google Scholar 

  15. Stamler R. Implications of the INTERSALT study. Hypertension. 1991;17:I16–20.

    Article  CAS  PubMed  Google Scholar 

  16. Moraes MR, Bacurau RF, Simoes HG, Campbell CS, Pudo MA, Wasinski F, Pesquero JB, Wurtele M, Araujo RC. Effect of 12 weeks of resistance exercise on post-exercise hypotension in stage 1 hypertensive individuals. J Hum Hypertens. 2012;26:533–9.

    Article  CAS  PubMed  Google Scholar 

  17. Carpio-Rivera E, Moncada-Jiménez J, Salazar-Rojas W, Solera-Herrera A. Acute effects of exercise on blood pressure: a meta-analytic investigation. Arq Bras Cardiol. 2016;106:422–33.

    PubMed  PubMed Central  Google Scholar 

  18. Hagberg JM, Ferrell RE, Dengel DR, Wilund KR. Exercise training-induced blood pressure and plasma lipid improvements in hypertensives may be genotype dependent. Hypertension. 1999;34:18–23.

    Article  CAS  PubMed  Google Scholar 

  19. Hagberg JM, Park JJ, Brown MD. The role of exercise training in the treatment of hypertension: an update. Sports Med. 2000;30:193–206.

    Article  CAS  PubMed  Google Scholar 

  20. Rankinen T, Gagnon J, Perusse L, Chagnon YC, Rice T, Leon AS, Skinner JS, Wilmore JH, Rao DC, Bouchard C. AGT M235T and ACE ID polymorphisms and exercise blood pressure in the HERITAGE Family Study. Am J Physiol Heart Circ Physiol. 2000;279:H368–74.

    Article  CAS  PubMed  Google Scholar 

  21. Rankinen T, Rice T, Perusse L, Chagnon YC, Gagnon J, Leon AS, Skinner JS, Wilmore JH, Rao DC, Bouchard C. NOS3 Glu298Asp genotype and blood pressure response to endurance training: the HERITAGE family study. Hypertension. 2000;36:885–9.

    Article  CAS  PubMed  Google Scholar 

  22. Rankinen T, Rice T, Leon AS, Skinner JS, Wilmore JH, Rao DC, Bouchard C. G protein beta 3 polymorphism and hemodynamic and body composition phenotypes in the HERITAGE Family Study. Physiol Genomics. 2002;8:151–7.

    Article  CAS  PubMed  Google Scholar 

  23. Rankinen T, Church T, Rice T, Markward N, Leon AS, Rao DC, Skinner JS, Blair SN, Bouchard C. Effect of endothelin 1 genotype on blood pressure is dependent on physical activity or fitness levels. Hypertension. 2007;50:1120–5.

    Article  CAS  PubMed  Google Scholar 

  24. Rice T, An P, Gagnon J, Leon AS, Skinner JS, Wilmore JH, Bouchard C, Rao DC. Heritability of HR and BP response to exercise training in the HERITAGE Family Study. Med Sci Sports Exerc. 2002;34:972–9.

    Article  PubMed  Google Scholar 

  25. Bouchard C, Rankinen T. Individual differences in response to regular physical activity. Med Sci Sports Exerc. 2001;33 Suppl 6:S446–51; discussion S452–3.

    Article  CAS  PubMed  Google Scholar 

  26. Anunciação PG. Polito MD. A review on post-exercise hypotension in hypertensive individuals. Arq Bras Cardiol. 2011;96:e100–9.

    Article  Google Scholar 

  27. Halliwill JR. Mechanisms and clinical implications of post-exercise hypotension in humans. Exerc Sport Sci Rev. 2001;29:65–70.

    CAS  PubMed  Google Scholar 

  28. Rao SP, Collins HL, Dicarlo SE. Postexercise alpha-adrenergic receptor hyporesponsiveness in hypertensive rats is due to nitric oxide. Am J Physiol Regul Integr Comp Physiol. 2002;282:R960–8.

    Article  CAS  PubMed  Google Scholar 

  29. Boushel R, Langberg H, Gemmer C, Olesen J, Crameri R, Scheede C, Sander M, Kjaer M. Combined inhibition of nitric oxide and prostaglandins reduces human skeletal muscle blood flow during exercise. J Physiol. 2002;543(Pt 2):691–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mortensen SP, Nyberg M, Thaning P, Saltin B, Hellsten Y. Adenosine contributes to blood flow regulation in the exercising human leg by increasing prostaglandin and nitric oxide formation. Hypertension. 2009;53:993–9.

    Article  CAS  PubMed  Google Scholar 

  31. Zafeiridis A. Mechanisms and exercise characteristics influencing postexercise hypotension. Br J Med Med Res. 2014;4:5699–714.

    Article  Google Scholar 

  32. Chen C-Y, Bonham AC. Postexercise hypotension: central mechanisms. Exerc Sport Sci Rev. 2010;38:122–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Powers SK, Ji LL, Leeuwenburgh C. Exercise training–induced alterations in skeletal muscle antioxidant capacity: a brief review. Med Sci Sports Exerc. 1999;31:987–97.

    Article  CAS  PubMed  Google Scholar 

  34. Dudzinska W, Lubkowska A, Dolegowska B, Safranow K, Jakubowska K. Adenine, guanine and pyridine nucleotides in blood during physical exercise and restitution in healthy subjects. Eur J Appl Physiol. 2010;110:1155–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Halliwill JR, Buck TM, Lacewell AN, Romero SA. Postexercise hypotension and sustained postexercise vasodilatation: what happens after we exercise? Exp Physiol. 2013;98:7–18.

    Article  PubMed  Google Scholar 

  36. Ray CA, Carrasco DI. Isometric handgrip training reduces arterial pressure at rest without changes in sympathetic nerve activity. Am J Physiol Heart Circ Physiol. 2000;279:H245–9.

    Article  CAS  PubMed  Google Scholar 

  37. Clifford PS, Hellsten Y. Vasodilatory mechanisms in contracting skeletal muscle. J Appl Physiol. 1985;97:393–403.

    Article  Google Scholar 

  38. Melo CM, AlencarFilho AC, Tinucci T, Mion D Jr, Forjaz CL. Postexercise hypotension induced by low-intensity resistance exercise in hypertensive women receiving captopril. Blood Press Monit. 2006;11:183–9.

    Article  PubMed  Google Scholar 

  39. Fisher MM. The effect of resistance exercise on recovery blood pressure in normotensive and borderline hypertensive women. J Strength Cond Res. 2001;15:210–6.

    CAS  PubMed  Google Scholar 

  40. Hardy DO, Tucker LA. The effects of a single bout of strength training on ambulatory blood pressure levels in 24 mildly hypertensive men. Am J Health Promot. 1998;13:69–72.

    Article  CAS  PubMed  Google Scholar 

  41. Moraes MR, Bacurau RF, Ramalho JD, Reis FC, Casarini DE, Chagas JR, et al. Increase in kinins on post-exercise hypotension in normotensive and hypertensive volunteers. Biol Chem. 2007;388:533–40.

    Article  CAS  PubMed  Google Scholar 

  42. Mediano MFFP, Paravidino V, Simão R, Pontes FL, Polito MD. Subacute behavior of the blood pressure after power training in controlled hypertensive individuals. Rev Bras Med Esporte. 2005;11:337–40.

    Article  Google Scholar 

  43. BrandaoRondon MU, Alves MJ, Braga AM, et al. Postexercise blood pressure reduction in elderly hypertensive patients. J Am Coll Cardiol. 2002;39:676–82.

    Article  Google Scholar 

  44. Taylor-Tolbert NS, Dengel DR, Brown MD, et al. Ambulatory blood pressure after acute exercise in older men with essential hypertension. Am J Hypertens. 2000;13:44–51.

    Article  CAS  PubMed  Google Scholar 

  45. Brito Ade F, de Oliveira CV, Brasileiro-Santos Mdo S, Santos Ada C. Resistance exercise with different volumes: blood pressure response and forearm blood flow in the hypertensive elderly. Clin Interv Aging. 2014;9:2151–8.

    PubMed  Google Scholar 

  46. Keese F, Farinatti P, Pescatello L, Monteiro W. A comparison of the immediate effects of resistance, aerobic, and concurrent exercise on postexercise hypotension. J Strength Cond Res. 2011;25:1429–36.

    Article  PubMed  Google Scholar 

  47. Ruiz RJ, Simao R, Saccomani MG, Casonatto J, Alexander JL, Rhea M, Polito MD. Isolated and combined effects of aerobic and strength exercise on post-exercise blood pressure and cardiac vagal reactivation in normotensive men. J Strength Cond Res. 2011;25:640–5.

    Article  PubMed  Google Scholar 

  48. Teixeira L, Ritti-Dias RM, Tinucci T, Mion Junior D, Forjaz CL. Post-concurrent exercise hemodynamics and cardiac autonomic modulation. Eur J Appl Physiol. 2011;111:2069–78.

    Article  PubMed  Google Scholar 

  49. Brito Ade F, de Oliveira CV, Santos MDS, Santos Ada C. High-intensity exercise promotes postexercise hypotension greater than moderate intensity in elderly hypertensive individuals. Clin Physiol Funct Imag. 2014;34:126–32.

    Article  Google Scholar 

  50. de FreitasBrito A, Brasileiro-Santos MDS, Coutinho de Oliveira CV, Sarmento da Nóbrega TK, Lúcia de MoraesForjaz C, da Cruz Santos A. High-intensity resistance exercise promotes postexercise hypotension greater than moderate intensity and affects cardiac autonomic responses in women who are hypertensive. J Strength Cond Res. 2015;29:3486–93.

    Article  Google Scholar 

  51. de Freitas Brito A, Brasileiro-Santos MDS, de Coutinho, Oliveira CV, de Cruz Santos A. Postexercise hypotension is volume-dependent in hypertensives: autonomic and forearm blood responses. J Strength Cond Res. 2018; https://doi.org/10.1519/JSC.0000000000001735.

    Article  PubMed  Google Scholar 

  52. Joubert DP, Granados JZ, Oliver JM, Noack BL, Grandjean PW, Woodman CR, Riechman SE, Crouse SF. An acute bout of aquatic treadmill exercise induces greater improvements in endothelial function and post-exercise hypotension than land treadmill exercise: a crossover study. Am J Phys Med Rehabil. 2018; https://doi.org/10.1097/PHM.0000000000000923.

    Article  Google Scholar 

  53. Chen YM. Perceived barriers to physical activity among older adults residing in long-term care institutions. J Clin Nurs. 2010;19:432–9.

    Article  PubMed  Google Scholar 

  54. Millar PJ, McGowan CL, Cornelissen VA, Araujo CG, Swaine IL. Evidence for the role of isometric exercise training in reducing blood pressure: potential mechanisms and future directions. Sports Med. 2014;44:345–56.

    Article  PubMed  Google Scholar 

  55. Badrov MB, Horton S, Millar PJ, McGowan CL. Cardiovascular stress reactivity tasks successfully predict the hypotensive response of isometric handgrip training in hypertensives. Psychophysiology. 2013;50:407–14.

    Article  PubMed  Google Scholar 

  56. Carlson DJ, Dieberg G, Hess NC, Millar PJ, Smart NA. Isometric exercise training for blood pressure management: a systematic review and meta-analysis. Mayo Clin Proc. 2014;89:327–34.

    Article  PubMed  Google Scholar 

  57. McGowan CL, Visocchi A, Faulkner M, Verduyn R, Rakobowchuk M, Levy AS, McCartney N, MacDonald MJ. Isometric handgrip training improves local flow-mediated dilation in medicated hypertensives. Eur J Appl Physiol. 2007;99:227–34.

    Article  PubMed  Google Scholar 

  58. Taylor AC, McCartney N, Kamath MV, Wiley RL. Isometric training lowers resting blood pressure and modulates autonomic control. Med Sci Sports Ecerc. 2003;35:251–6.

    Article  Google Scholar 

  59. Souza LR, Vicente JB, Melo GR, Moraes VC, Olher RR, Sousa IC, Peruchi LH, Neves RV, Rosa TS, Ferreira AP, Moraes MR. Acute hypotension after moderate-intensity handgrip exercise in hypertensive elderly people. J Strength Cond Res. 2018; https://doi.org/10.1519/JSC.0000000000002460.

    Article  PubMed  Google Scholar 

  60. Olher RRV, Bocalini DS, Bacurau RF, Rodriguez D, Figueira A Jr, Pontes FL Jr, Navarro F, Simões HG, Araujo RC, Moraes MR. Isometric handgrip does not elicit cardiovascular overload or post-exercise hypotension in hypertensive older women. Clin Interv Aging. 2013;8:649–55.

    PubMed Central  Google Scholar 

  61. Cadore EL, Pinto RS, Bottaro M, Izquierdo M. Strength and endurance training prescription in healthy and frail elderly. Aging Dis. 2014;5:183–95.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ferrari R, Umpierre D, Vogel G, Vieira PJC, Santos LP, de Mello RB, Tanaka H, Fuchs SC. Effects of concurrent and aerobic exercises on postexercise hypotension in elderly hypertensive men. Exp Gerontol. 2017;98:1–7.

    Article  PubMed  Google Scholar 

  63. Jones H, George K, Edwards B, Atkinson G. Is the magnitude of acute post-exercise hypotension mediated by exercise intensity or total work done? Eur J Appl Physiol. 2007;102:33–40.

    Article  PubMed  Google Scholar 

  64. Hamer M. The anti-hypertensive effects of exercise: integrating acute and chronic mechanisms. Sports Med. 2006;36:109–16.

    Article  PubMed  Google Scholar 

  65. Thijssen DH, Dawson EA, van den Munckhof IC, Birk GK, Timothy Cable N, Green DJ. Local and systemic effects of leg cycling training on arterial wall thickness in healthy humans. Atherosclerosis. 2013;229:282–6.

    Article  CAS  PubMed  Google Scholar 

  66. Miyai N, Shiozaki M, Yabu M, Utsumi M, Morioka I, Miyashita K, et al. Increased mean arterial pressure response to dynamic exercise in normotensive subjects with multiple metabolic risk factors. Hypertens Res. 2013;36:534–9.

    Article  PubMed  Google Scholar 

  67. Rahmouni K, Correia ML, Haynes WG, Mark AL. Obesity-associated hypertension: new insights into mechanisms. Hypertension. 2005;45:9–14.

    Article  CAS  PubMed  Google Scholar 

  68. Schoenenberger AW, Schoenenberger-Berzins R, Suter PM, Erne P. Effects of weight on blood pressure at rest and during exercise. Hypertens Res. 2013;36:1045–50.

    Article  PubMed  Google Scholar 

  69. Canuto PM, Nogueira ID, Cunha ES, Ferreira GM, Pinto KM, Costa FA, Nogueira PA. Influence of resistance training performed at different intensities and same work volume over BP of elderly hypertensive female patients. Rev Bras Med Esporte. 2011;17:246–9.

    Article  Google Scholar 

  70. Brito AF, Oliveira CVC, Toscano LT, Silva AS. Supplements and foods with potential reduction of blood pressure in prehypertensive and hypertensive subjects: a systematic review. ISRN Hypertension. 2013;2013:1–15.

    Article  CAS  Google Scholar 

  71. Leibowitz A, Faltin Z, Perl A, Eshdat Y, Hagay Y, Peleg E, Grossman E. Red grape berry–cultured cells reduce blood pressure in rats with metabolic-like syndrome. Eur J Nutr. 2014;53:973–80.

    Article  CAS  PubMed  Google Scholar 

  72. Patki G, Allam FH, Atrooz F, Dao AT, Solanki N, Chugh G, Asghar M, Jafri F, Bohat R, Alkadhi KA, Salim S. Grape powder intake prevents ovariectomy-induced anxiety-like behavior, memory impairment and high blood pressure in female Wistar rats. PLoS One. 2013;8:e74522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Park YK, Kim JS, Kang MH. Concord grape juice supplementation reduces blood pressure in Korean hypertensive men: double-blind, placebo controlled intervention trial. Biofactors. 2004;22:145–7.

    Article  CAS  PubMed  Google Scholar 

  74. Park YK, Lee SH, Park E, Kim JS, Kang MH. Changes in antioxidant status, blood pressure, and lymphocyte DNA damage from grape juice supplementation. Ann N Y Acad Sci. 2009;1171:385–90.

    Article  CAS  PubMed  Google Scholar 

  75. Belcaro G, Ledda A, Hu S, Cesarone MR, Feragalli B, Dugall M. Grape seed procyanidins in pre- and mild hypertension: a registry study. Evid Based Complement Alternat Med. 2013;2013:1–15.

    Google Scholar 

  76. Dohadwala MM, Vita JA. Grapes and cardiovascular disease. J Nutr. 2009;139:1788S–93S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Noguer MA, Cerezo AB, Navarro ED, Garcia-Parrilla MC. Intake of alcohol-free red wine modulates antioxidant enzyme activities in a human intervention study. Pharmacol Res. 2012;65:609–14.

    Article  CAS  PubMed  Google Scholar 

  78. Neto MM, da Silva TF, de Lima FF, Siqueira TMQ, Toscano LT, de Moura SKMSF, Silva AS. Whole red grape juice reduces blood pressure at rest and increases post-exercise hypotension. J Am Coll Nutr. 2017;36:533–40.

    Article  PubMed  CAS  Google Scholar 

  79. Guidry MA, Blanchard BE, Thompson PD, Maresh CM, Seip RL, Taylor AL, Pescatello LS. The influence of short and long duration on the blood pressure response to an acute bout of dynamic exercise. Am Heart J. 2006;151:1322.e5–12.

    Article  Google Scholar 

  80. Monteiro MF, SobralFilho DC. Physical exercise and blood pressure control. Rev Bras Med Esporte. 2004;10:513–6.

    Article  Google Scholar 

  81. Casonatto J, Polito MD. Post-exercise hypotension: a systematic review. Rev Bras Med Esporte. 2009;15:151–7.

    Article  Google Scholar 

  82. Marques-Silvestre ACOM, Santos MSB, Oliveira AS, Silva FTM, Santos AC. Magnitude of hypotension after acute aerobic exercise: a systematic review of randomized trials. Motricidade. 2014;10:99–111.

    Article  Google Scholar 

  83. Pardono E, Almeida MB, Bastos AA, Simões HG. Post-exercise hypotension: possible relationship with ethnic and genetic factors. Rev Bras Cineantropom Desempenho Hum. 2012;14:353–61.

    Article  Google Scholar 

  84. Junior JFCR, Silva AS, Cardoso GA, Silvino VO, Martins MCC, Santos MAP. Androgenic-anabolic steroids inhibited post-exercise hypotension: a case control study. Braz J Phys Ther. 2018;22:77–81.

    Article  PubMed  Google Scholar 

  85. O’Keefe JH, Bhatti SK, Patil HR, DiNicolantonio JJ, Lucan SC, Lavie CJ. Effects of habitual coffee consumption on cardiometabolic disease, cardiovascular health, and all-cause mortality. J Am Coll Cardiol. 2013;62:1043–51.

    Article  PubMed  Google Scholar 

  86. Notarius CF, Morris BL, Floras JS. Caffeine attenuates early post-exercise hypotension in middle-aged subjects. Am J Hypertens. 2006;19:184–8.

    Article  CAS  PubMed  Google Scholar 

  87. Cazé RF, Franco GAM, Porpino SKP, Souza AA, Padilhas OP, Silva AS. Caffeine influence on blood pressure response to aerobic exercise in hypertensive subjects. Rev Bras Med Esporte. 2010;16:324–8.

    Article  Google Scholar 

  88. Nóbrega TKS, Moura Junior JS, Alves NFB, Santos AC, Silva AS. A ingestão de café abole a hipotensão induzida porexercício aeróbio: um estudopiloto. Revista da EducaçâoFísica/UEM. Maringá. 2011;22:601–12.

    Google Scholar 

  89. Souza AA, Silva RS, Silva TF, Tavares RL, Silva AS. Influence of different doses of coffee on post-exercise blood pressure response. Am J Cardiovasc Dis. 2016;6:146–52.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agata Bielecka-Dabrowa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bielecka-Dabrowa, A., Bartłomiejczyk, M.A., Maciejewski, M., Banach, M. (2020). Post-exercise Hypotension in the Elderly. In: Alagiakrishnan, K., Banach, M. (eds) Hypotensive Syndromes in Geriatric Patients. Springer, Cham. https://doi.org/10.1007/978-3-030-30332-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30332-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30331-0

  • Online ISBN: 978-3-030-30332-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics