Skip to main content

Using Growing Neural Gas Networks for Clustering of Web Data as a Foundation for Marketing Automation in Brick-and-Mortar Retailing

  • 396 Accesses

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 1046)

Abstract

Even though more than 90 percent of retail executives agree to personalization in marketing being a top priority for them, only a handful deliver on this aspect. In brick-and-mortar retailing marketing actions that are conducted for large-scale grid based on an arbitrarily set distribution area - not tailored to single stores. This is mainly due to the lack of data and missing processes for automatization of marketing management. Even though the collection of data is easy to establish, the resulting data quality and condition is a problem for many clustering algorithms. Even methods of Machine Learning that are considered to be more robust to noise have issues with the unpredictable nature of such data collection, as they rely on a predefined structure. This paper presents a method for collecting a large amount of relevant location information for a major German brick-and-mortar retailer from online data sources and mapping them to a grid model of Germany at the level of 1 km2. The clustering is conducted using methods of Machine Learning, in particular Growing Neural Gas (GNG), a neural network variation. The resulting store clusters are then tested for the purpose of location specific marketing. The GNG adapts good to the noisy data and the practical quality is feasible.

Keywords

  • Artificial intelligence
  • Neural network
  • Growing neural gas
  • Retail
  • Marketing automation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-30329-7_2
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-30329-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Weber, F., Schütte, R.: A domain-oriented analysis of the impact of machine learning—the case of retailing. Big Data Cogn. Comput. 3(1), 11 (2019)

    CrossRef  Google Scholar 

  2. Kari, M., Weber, F., Schütte, R.: Datengetriebene Entscheidungsfindung aus strategischer und operativer Perspektive im Handel. HMD Praxis der Wirtschaftsinformatik (2019)

    Google Scholar 

  3. Schöler, K.: Das Marktgebiet im Einzelhandel: Determinanten, Erklärungsmodelle u. Gestaltungsmöglichkeiten d. räumlichen Absatzes. Duncker & Humblot (1981)

    Google Scholar 

  4. Schröder, H.: Handelsmarketing Methoden und Instrumente im Einzelhandel, 1st edn. Redline Wirtschaft, München (2002)

    Google Scholar 

  5. Wedel, M., Kamakura, W.A.: Market segmentation: Conceptual and Methodological Foundations, vol. 8. Springer, New York (2012)

    Google Scholar 

  6. Doyle, P., Saunders, J.: Multiproduct advertising budgeting. Mark. Sci. 9(2), 97–113 (1990)

    CrossRef  Google Scholar 

  7. Smith, W.R.: Product differentiation and market segmentation as alternative marketing strategies. J. Mark. 21(1), 3–8 (1956)

    CrossRef  Google Scholar 

  8. Weinstein, A.: Market segmentation: Using Niche Marketing to Exploit New Markets. Probus Publishing, hicago (1987)

    Google Scholar 

  9. Kesting, T., Rennhak, C.: Marktsegmentierung in der deutschen Unternehmenspraxis. Springer, Hidelberg (2008)

    Google Scholar 

  10. Huang, J.-J., Tzeng, G.-H., Ong, C.-S.: Marketing segmentation using support vector clustering. Expert Syst. Appl. 32(2), 313–317 (2007)

    CrossRef  Google Scholar 

  11. Jiang, H., Kamber, M.: Data Mining: Concept and Techniques, pp. 26–78. Morgan Kaufmann Publishers Inc., San Francissco (2001)

    Google Scholar 

  12. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA (1967)

    Google Scholar 

  13. Kohonen, T.: Self-organization and Associative Memory, vol. 8. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  14. Mitsyn, S., Ososkov, G.: The growing neural gas and clustering of large amounts of data. Opt. Mem. Neural Netw. 20(4), 260–270 (2011)

    CrossRef  Google Scholar 

  15. Cottrell, M., et al.: Batch and median neural gas. Neural Netw. 19(6–7), 762–771 (2006)

    CrossRef  Google Scholar 

  16. Brescia, M., et al.: The detection of globular clusters in galaxies as a data mining problem. Mon. Not. R. Astron. Soc. 421(2), 1155–1165 (2012)

    CrossRef  Google Scholar 

  17. Martinetz, T., Schulten, K.: A “neural-gas” network learns topologies (1991)

    Google Scholar 

  18. Fritzke, B.: A growing neural gas network learns topologies. In: Advances in Neural Information Processing Systems (1995)

    Google Scholar 

  19. Chaudhary, V., Ahlawat, A.K., Bhatia, R.: Growing neural networks using soft competitive learning. Int. J. Comput. Appl. 21(3), 1–6 (2011). (0975-8887)

    Google Scholar 

  20. Xinjian, Q., Guojian, C., Zheng, W.: An overview of some classical growing neural networks and new developments. In: 2010 2nd International Conference on Education Technology and Computer (2010)

    Google Scholar 

  21. Angora, G., et al.: Neural gas based classification of globular clusters. In: International Conference on Data Analytics and Management in Data Intensive Domains. Springer (2017)

    Google Scholar 

  22. Ghesmoune, M., Lebbah, M., Azzag, H.: A new growing neural gas for clustering data streams. Neural Netw. 78, 36–50 (2016)

    CrossRef  Google Scholar 

  23. Hartmann, M.: Preismanagement im Einzelhandel. 1. (ed.) Gabler Edition Wissenschaft. Dt. Univ.-Verl, Wiesbaden (2006)

    Google Scholar 

  24. Diller, H., Preispolitik. 3. (ed.). Kohlhammer, Stuttgart (2000)

    Google Scholar 

  25. Weber, F.: Streaming analytics—real-time customer satisfaction in Brick-and-Mortar retailing. In: Cybernetics and Automation Control Theory Methods in Intelligent Algorithms. Springer, Cham (2019)

    Google Scholar 

  26. Mendes, A.B., Themido, I.H.: Multi-outlet retail site location assessment. Int. Trans. Oper. Res. 11(1), 1–18 (2004)

    CrossRef  Google Scholar 

  27. Themido, I.H., Quintino, A., Leitão, J.: Modelling the retail sales of gasoline in a Portuguese metropolitan area. Int. Trans. Oper. Res. 5(2), 89–102 (1998)

    CrossRef  Google Scholar 

  28. Meffert, H., Burmann, C., Kirchgeorg, M.: Marketing Grundlagen marktorientierter Unternehmensführung, Konzepte, Instrumente, Praxisbeispiele. 9. Auflage ed., Wiesbaden: Gabler (2000)

    Google Scholar 

  29. Freter, H.: Marktsegmentierung (= Informationen für Marketing-Entscheidungen). Stuttgart (1983)

    Google Scholar 

  30. Weber, F., Schütte, R.: State-of-the-art and adoption of artificial intelligence in retailing. Digital Policy, Regulation and Governance. https://doi.org/10.1108/dprg-09-2018-0050

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Weber, F. (2019). Using Growing Neural Gas Networks for Clustering of Web Data as a Foundation for Marketing Automation in Brick-and-Mortar Retailing. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds) Intelligent Systems Applications in Software Engineering. CoMeSySo 2019 2019. Advances in Intelligent Systems and Computing, vol 1046. Springer, Cham. https://doi.org/10.1007/978-3-030-30329-7_2

Download citation