Skip to main content

Towards Ontology Engineering Based on Transformation of Conceptual Models and Spreadsheet Data: A Case Study

  • Conference paper
  • First Online:
Intelligent Systems Applications in Software Engineering (CoMeSySo 2019 2019)

Abstract

The ontology engineering is a complex and time-consuming process. In this regard, methods for automated formation of ontologies based on various information sources (e.g., databases, spreadsheets data, and text documents, etc.) are being actively developed. This paper presents a case study for the domain ontology engineering based on analysis and transformation of conceptual models and spreadsheet data. The analysis of conceptual models, which are serialized using XML, provides the opportunity to develop content ontology design patterns. The specific concepts for filling obtained ontology design patterns are resulted from the transformation of spreadsheet data in the CSV format. In this paper, we present statement of the problem and the approach for its solution. The illustrative example describes ontology engineering for the industrial safety inspection tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guarino, N.: Formal ontology in information systems. In: The First International Conference on Formal Ontology in Information Systems (FOIS 1998), vol. 46, pp. 3–15 (1998)

    Google Scholar 

  2. Starr, R.R., de Oliveira, J.M.P.: Concept maps as the first step in an ontology construction method. Inf. Syst. 38, 771–783 (2013). https://doi.org/10.1109/EDOCW.2010.43

    Article  Google Scholar 

  3. Herrero-Zazo, M., Segura-Bedmar, I., Martínez, P.: Conceptual models of drug-drug interactions: a summary of recent efforts. Knowl.-Based Syst. 114, 99–107 (2016). https://doi.org/10.1016/j.knosys.2016.10.006

    Article  Google Scholar 

  4. Berman, A.F., Dorodnykh, N.O., Nikolaychuk, O.A., Pavlov, N.Y., Yurin, A.Yu.: Fishbone diagrams for the development of knowledge bases. In: The 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2018), pp. 967–972 (2018). https://doi.org/10.23919/MIPRO.2018.8400177

  5. Shigarov, A.O., Mikhailov, A.A.: Rule-based spreadsheet data transformation from arbitrary to relational tables. Inf. Syst. 71, 123–136 (2017). https://doi.org/10.1016/j.is.2017.08.004

    Article  Google Scholar 

  6. Tijerino, Y.A., Embley, D.W., Lonsdale, D.W., Ding, Y., Nagy, G.: Towards ontology generation from tables. World Wide Web 8(3), 261–285 (2005). https://doi.org/10.1007/s11280-005-0360-8

    Article  Google Scholar 

  7. Hitzler, P., Gangemi, A., Janowicz, K., Krisnadhi, A.A., Presutti, V.: Ontology Engineering with Ontology Design Patterns: Foundations and Applications. Studies on the Semantic Web. IOS Press/AKA, Amsterdam (2016)

    Google Scholar 

  8. Association for ontology design & patterns (ODPA). http://ontologydesignpatterns.org/wiki/ODPA. Accessed 18 Mar 2019

  9. Milanović, M., Gašević, D., Giurca, A., Wagner, G., Devedžić, V.: Bridging concrete and abstract syntaxes in model-driven engineering: a case of rule languages. Soft. Pract. Exp. 39(16), 1313–1346 (2009). https://doi.org/10.1002/spe.938

    Article  Google Scholar 

  10. Zedlitz, J., Luttenberger, N.: Conceptual modelling in UML and OWL-2. Int. J. Adv. Softw. 7(1), 182–196 (2014)

    Google Scholar 

  11. Bohring, H., Auer, S.: Mapping XML to OWL ontologies. In: Leipziger Informatik-Tage, vol. 72, pp. 147–156 (2005)

    Google Scholar 

  12. Rodrigues, T., Rosa, P., Cardoso, J.: Moving from syntactic to semantic organizations using JXML2OWL. Comput. Ind. 59(8), 808–819 (2008). https://doi.org/10.1016/j.compind.2008.06.002

    Article  Google Scholar 

  13. O’Connor, M.J., Das, A.K.: Acquiring OWL ontologies from XML documents. In: The 6th International Conference on Knowledge Capture (K-CAP 2011), pp. 17–24 (2011). https://doi.org/10.1145/1999676.1999681

  14. Bedini, I., Matheus, C., Patel-Schneider, P.F., Boran, A., Nguyen, B.: Transforming XML schema to OWL using patterns. In: The 2011 IEEE Fifth International Conference on Semantic Computing, pp. 102–109 (2011). https://doi.org/10.1109/ICSC.2011.77

  15. Gleaning resource descriptions from dialects of languages (GRDDL). https://www.w3.org/TR/grddl/. Accessed 18 Mar 2019

  16. Lange, C.: Krextor - an extensible framework for contributing content math to the web of data. In: International Conference on Intelligent Computer Mathematics, pp. 304–306 (2011). https://doi.org/10.1007/978-3-642-22673-1_29

    Google Scholar 

  17. Bischof, S., Decker, S., Krennwallner, T., Lopes, N., Polleres, A.: Mapping between RDF and XML with XSPARQL. J. Data Semant. 1(3), 147–185 (2012). https://doi.org/10.1007/s13740-012-0008-7

    Article  Google Scholar 

  18. Dorodnykh, N.O.: Web-based software for automating development of knowledge bases on the basis of transformation of conceptual models. Open Semant. Technol. Intell. Syst. 1, 145–150 (2017)

    Google Scholar 

  19. Dorodnykh, N.O., Yurin, A.Yu.: A domain-specific language for transformation models. In: CEUR Workshop Proceedings. Information Technologies: Algorithms, Models, Systems (ITAMS 2018), vol. 2221, pp. 70–75 (2018)

    Google Scholar 

  20. Mauro, N., Esposito, F., Ferilli, S.: Finding critical cells in web tables with SRL: trying to uncover the devil’s tease. In: Proceedings of the 12th International Conference on Document Analysis and Recognition, pp. 882–886 (2013). https://doi.org/10.1109/ICDAR.2013.180

  21. Adelfio, M., Samet, H.: Schema extraction for tabular data on the web. Proc. VLDB Endow. 6(6), 421–432 (2013). https://doi.org/10.14778/2536336.2536343

    Article  Google Scholar 

  22. Chen, Z., Cafarella, M.: Integrating spreadsheet data via accurate and low-effort extraction. In: Proceedings of the 20th ACM SIGKDD International Conference Knowledge Discovery and Data Mining, pp. 1126–1135 (2014). https://doi.org/10.1145/2623330.2623617

  23. Embley, D.W., Krishnamoorthy, M.S., Nagy, G., Seth, S.: Converting heterogeneous statistical tables on the web to searchable databases. Int. J. Doc. Anal. Recogn. 19(2), 119–138 (2016). https://doi.org/10.1007/s10032-016-0259-1

    Article  Google Scholar 

  24. Kandel, S., Paepcke, A., Hellerstein, J., Heer, J.: Wrangler: interactive visual specification of data transformation scripts. In: Proceedings of the SIGCHI Conference Human Factors in Computing Systems, pp. 3363–3372 (2011). https://doi.org/10.1145/1978942.1979444

  25. Hung, V., Benatallah, B., Saint-Paul, R.: Spreadsheet-based complex data transformation. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 1749–1754 (2011). https://doi.org/10.1145/2063576.2063829

  26. Harris, W., Gulwani, S.: Spreadsheet table transformations from examples. ACM SIGPLAN Not. 46(6), 317–328 (2011). https://doi.org/10.1145/1993316.1993536

    Article  Google Scholar 

  27. O’Connor, M.J., Halaschek-Wiener, C., Musen, M.A.: Mapping master: a flexible approach for mapping spreadsheets to OWL. In: The Semantic Web – ISWC 2010. LNCS, pp. 194–208 (2010). https://doi.org/10.1007/978-3-642-17749-1_13

    Google Scholar 

  28. Mulwad, V., Finin, T., Joshi, A.: A domain independent framework for extracting linked semantic data from tables. In: Search Computing, pp. 16–33 (2012). https://doi.org/10.1007/978-3-642-34213-4_2

    Chapter  Google Scholar 

  29. Da Silva, A.R.: Model-driven engineering: a survey supported by the unified conceptual model. Comput. Lang. Syst. Struct. 43, 139–155 (2015). https://doi.org/10.1016/j.cl.2015.06.001

    Article  Google Scholar 

  30. Berman, A.F., Nikolaichuk, O.A., Yurin, A.Y., Kuznetsov, K.A.: Support of decision-making based on a production approach in the performance of an industrial safety review. Chem. Pet. Eng. 50(1–2), 730–738 (2015). https://doi.org/10.1007/s10556-015-9970-x

    Article  Google Scholar 

  31. Yurin, A.H., Dorodnykh, N.O., Nikolaychuk, O.A., Berman, A.F., Pavlov, A.I.: ISI models, mendeley data, v1 (2019). http://dx.doi.org/10.17632/f9h2t766tk.1

  32. https://github.com/tabbydoc/tabbyxl/wiki/Industrial-Safety-Inspection

  33. Dorodnykh, N.O., Yurin, A.Yu., Stolbov A.B.: Ontology driven development of rule-based expert systems. In: The 3rd Russian-Pacific Conference on Computer Technology and Applications (RPC 2018), pp. 1–6 (2018). https://doi.org/10.1109/RPC.2018.8482174

  34. Grishenko, M.A., Dorodnykh, N.O., Nikolaychuk, O.A., Yurin, A.Yu.: Designing rule-based expert systems with the aid of the model-driven development approach. Expert Syst. 35(5), 1–23 (2018). https://doi.org/10.1111/exsy.12291

    Article  Google Scholar 

Download references

Acknowledgement

The contribution of this work was supported by the Russian Science Foundation under Grant No. 18-71-10001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Yu. Yurin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dorodnykh, N.O., Yurin, A.Y. (2019). Towards Ontology Engineering Based on Transformation of Conceptual Models and Spreadsheet Data: A Case Study. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds) Intelligent Systems Applications in Software Engineering. CoMeSySo 2019 2019. Advances in Intelligent Systems and Computing, vol 1046. Springer, Cham. https://doi.org/10.1007/978-3-030-30329-7_22

Download citation

Publish with us

Policies and ethics