Skip to main content

The Complete Sequence of the Almond Genome

  • Chapter
  • First Online:
The Almond Tree Genome

Abstract

Almond genome has been sequenced, and this has been possible thanks to next generation sequencing technologies like Illumina, PacBio, Oxford Nanopore and Pacific Biosciences, among others. The first chromosome-scale almond genome sequenced was done using the Lauranne cultivar, a sweet homozygous, self-compatible, hard-shell French cultivar, with an estimated size of 246 Mb. With this sequencing, the domestication of wild bitter almonds to sweet ones was finally elucidated. The second almond cultivar sequenced was Texas, a cultivar important in the California Almond Breeding Programs, which estimated size was 238 Mb. Recently, the genome of the most widely grown almond cultivar, Nonpareil, has been sequenced (257.2 Mb), in a parallel study of the methylome. For almond molecular breeders, this is a great opportunity to develop new cultivars to meet the new challenges we are facing today and be ready for the future ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alioto T, Alexiou KG, Bardil A, Barteri F, Castanera R, Cruz F, Dhingra A, Duval H, Fernández i Martí Á, Frias L, Galán B, García JL, Howad W, Gómez‐Garrido J, Gut M, Julca I, Morata J, Puigdomènech P, Ribeca P, Rubio Cabetas MJ, Vlasova A, Wirthensohn M, Garcia‐Mas J, Gabaldón T, Casacuberta JM, Arús P (2019) Transposons played a major role in the diversification between the closely related almond and peach genomes: results from the almond genome sequence. Plant J 101(2):455–472. https://doi.org/10.1111/tpj.14538

  • D’Amico-Willman KM, Ouma WZ, Meulia T, Sideli GM, Gradziel TM, Fresnedo-Ramírez J (2022) Whole-genome sequence and methylome profiling of the almond [Prunus dulcis (Mill.) D.A. Webb] cultivar ‘Nonpareil’. G3 Genes|Genomes|Genetics. https://doi.org/10.1093/G3JOURNAL/JKAC065

  • Donoso JM, Picañol R, Serra O, Howad W, Alegre S, Arús P, Eduardo I (2016) Exploring almond genetic variability useful for peach improvement: mapping major genes and QTLs in two interspecific almond × peach populations. Mol Breed 36:1–17

    Article  CAS  Google Scholar 

  • Fresnedo-Ramírez J, Chan HM, Parfitt DE, Crisosto CH, Gradziel TM (2017) Genome-wide DNA-(de) methylation is associated with Noninfectious Bud-failure exhibition in Almond [Prunus dulcis [Mill.] D.A.Webb]. https://doi.org/10.1038/srep42686

  • Grover A, Sharma PC (2016) Development and use of molecular markers: past and present. Crit Rev Biotechnol 36:290–302

    Article  CAS  PubMed  Google Scholar 

  • Joobeur T, Viruel MA, de Vicente MC, Jáuregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I et al (1998) Construction of a saturated linkage map for Prunus using an almond×peach F2 progeny. TAG 97:1034–1041

    Article  CAS  Google Scholar 

  • Kaul S, Koo HL, Jenkins J, Rizzo M, Rooney T, Tallon LJ, Feldblyum T, Nierman W, Benito MI, Lin X et al (2000) (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nat 4086814(408):796–815

    Google Scholar 

  • Koepke T, Schaeffer S, Harper A, Dicenta F, Edwards M, Henry RJ, Møller BL, Meisel L, Oraguzie N, Silva H et al (2013) Comparative genomics analysis in Prunoideae to identify biologically relevant polymorphisms. Plant Biotechnol J 11:883–893

    Article  CAS  PubMed  Google Scholar 

  • Lotti C, Minervini AP, Delvento C, Losciale P, Gaeta L, Sánchez-Pérez R, Ricciardi L, Pavan S (2023) Detection and distribution of two dominant alleles associated with the sweet kernel phenotype in almond cultivated germplasm. Fron Plant Sci. https://doi.org/1410.3389/fpls.2023.1171195

  • Pavan S, Delvento C, Mazzeo R, Ricciardi F, Losciale P, Gaeta L, D’Agostino N, Taranto F, Sánchez-Pérez R, Ricciardi L, Lotti C (2021) Almond diversity and homozygosity define structure kinship inbreeding and linkage disequilibrium in cultivated germplasm and reveal genomic associations with nut and seed weight. Abs. Horticul. Res. 8(1). https://doi.org/10.1038/s41438-020-00447-1

  • Sánchez-Pérez R, Pavan S, Mazzeo R, Moldovan C, Aiese Cigliano R, Del Cueto J, Ricciardi F, Lotti C, Ricciardi L, Dicenta F et al (2019) Mutation of a bHLH transcription factor allowed almond domestication. Science (80) 364:1095–1098

    Google Scholar 

  • Su T, Wilf P, Huang Y, Zhang S, Zhou Z (2015) Peaches preceded humans: fossil evidence from SW China. Sci Reports 51(5):1–7

    Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam M, Ralph S, Rombauts S, Salamov A et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  CAS  PubMed  Google Scholar 

  • Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F et al (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is produced with the support of a “2020 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation” to AUSTRAL project. The foundation takes no responsibility for the opinions, statements, and contents of this project, which are entirely the responsibility of its authors. This work has also been supported by the project “ALADINO-MAGIC” funded by Ministry of Science and Innovation (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Sánchez-Pérez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sánchez-Pérez, R., Martínez-García, P.J., Fernández i Martí, Á. (2023). The Complete Sequence of the Almond Genome. In: Sánchez-Pérez, R., Fernandez i Marti, A., Martinez-Gomez, P. (eds) The Almond Tree Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-30302-0_3

Download citation

Publish with us

Policies and ethics