Skip to main content

Prospects and Future Questions

  • Chapter
  • First Online:
The Almond Tree Genome

Abstract

Cultivated almond is a tree crop producing seeds of great economic interest, adapted to hot and dry climate. Domesticated in Southeast Asia, its small diploid genome and phenotypic diversity make it an ideal model to complement the genomics studies in peach species, considered as the reference Prunus species. Actually, both species represent consanguineous species which evolved under two distinct environments, being warmer and more humid in the case of peach and colder and xerophytic for almond. The genome of almond has been fully sequenced. Subsequently, several consortiums including those in Spain, Australia and USA have completed substantial resequencing projects. These results indicate a 275 Mbp genome with substantial heterozygosity as well as repetitive sequence. The advent of affordable whole genome sequencing in combination with existing Prunus functional genomics data has enabled the leveraging of the significant novel diversity available in almond, providing an unmatched resource for the genetic improvement of this species. This proposed volume will expound the latest information on the current state of almond genomics and transcriptomics, with a particular focus on the latest findings, tools and strategies employed in genome sequencing and analysis in relation to the most important agronomic traits. Additionally, the knowledge of the whole genome sequence will allow the development in almond of the new methodology of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, as a new strategy for breeding, alternative to the traditional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alioto T, Alexiou K, Bardil A, Castanera R, García-Mas J, Gabaldon T, Casacuberta J, Arús P et al (2020) Transposons played a major role in the diversification between the closely related almond (Prunus dulcis) and peach (P. persica) genomes: results from the almond genome sequence. Plant J 101:455–472

    Google Scholar 

  • Arús P, Aranzana MJ, Howard W, Eduardo I (2022) The peach genome and its breeding applications. Acta Hort 1352:27–32

    Article  Google Scholar 

  • Callahan AM, Zhebentyayeva TN, Humann JL, Saski CA, Galimba KD, Georgi LL, Scorza R, Main D, Dardick CD (2021) Defining the ‘HoneySweet’ insertion event utilizing NextGen sequencing and a de Novo genome assembly of plum (Prunus domestica). Hortic Res 2021:8

    Article  Google Scholar 

  • Callebaut W (2012) Scientific perspectivism: a philosopher of science´s response to the challenge of big data biology. Stud Hist Philos Biolog Biomed Sci 43:69–80

    Article  Google Scholar 

  • Cao K, Yang X, Li Y, Zhu G, Fang W, Chen C, Wang X, Wu J, Wang L (2021) New high-quality peach (Prunus Persica L. Batsch) genome assembly to analyze the molecular evolutionary mechanism of volatile compounds in peach fruits. Plant J 108:281–295

    Article  CAS  PubMed  Google Scholar 

  • D’Amico KM, Ouma WZ, Meulia T, Sideli GM, Gradziel TM, Fresnedo-Ramírez J (2022) Whole-genome sequence and methylome profiling of the almond [Prunus dulcis (Mill.) DA Webb] cultivar ‘nonpareil’. G3 12:jkac065

    Google Scholar 

  • Fang Z, Lin-Wang K, Dai H, Zhou D, Jiang C, Espley RV, Deng C, Lin Y, Pan S, Ye X (2022) The genome of low-chill Chinese plum “Sanyueli” (Prunus salicina Lindl.) provides insights into the regulation of the chilling requirement of flower buds. Mol Ecol Resour 22:1919–1938

    Article  CAS  PubMed  Google Scholar 

  • Fiol A, Jurado-Ruiz F, López-Girona E, Aranzana MJ (2022) An efficient CRISPR-Cas9 enrichment sequencing strategy for characterizing complex and highly duplicated genomic regions. A case study in the prunus Salicina LG3-MYB10 genes cluster. Plant Methods 18:1–1

    Article  Google Scholar 

  • Gradziel TM, Martínez-Gómez P (2013) Almond breeding. In: Jacnick J (ed) Plant breeding reviews. Editorial Wiley & Blackwel, New York, vol 37, pp 207–258

    Google Scholar 

  • Groppi A, Liu S, Cornille A, Decroocq S, Bui QT, Tricon D, Cruaud C, Arribat S, Belser C, Marande W (2021) Population genomics of apricots unravels domestication history and adaptive events. Nat Commun 12:1–16

    Article  Google Scholar 

  • Huang Z, Shen F, Chen Y, Cao K, Wang L (2021) Chromosome-scale genome assembly and population genomics provide insights into the adaptation, domestication, and flavonoid metabolism of Chinese plum. Plant J 108:1174–1192

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, Zhang J, Wang S, Yang L, Luo Y, Gao S, Zhang M, Wu S, Hu S, Sun H (2019) The apricot (Prunus armeniaca L.) genome elucidates Rosaceae evolution and beta-carotenoid synthesis. Hortic Res 6

    Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna A, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012:337

    Google Scholar 

  • Jung S, Jiwan D, Cho I, Abbott A, Tomkins J, Main D (2009) Synteny of Prunus and other model plant species. BMC Genomics 10:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Lian X, Zhang H, Jiang C, Gao F, Yan L, Zheng X, Cheng J, Wang W, Wang X, Ye X (2022) De Novo chromosome-level genome of a semi-dwarf cultivar of Prunus persica identifies the aquaporin PpTIP2 as responsible for temperature-sensitive semi-dwarf trait and PpB3-1 for flower type and size. Plant Biotechnol J 20:886–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Feng C, Peng W, Hao J, Wang J, Pan J, He Y (2020) Chromosome-level draft genome of a diploid plum (Prunus salicina). Gigascience 9:giaa130

    Google Scholar 

  • Martínez-Gómez P, Crisosto C, Bonghi C, Rubio M (2011) New approaches to Prunus transcriptome analysis. Genetica 139:755–769

    Article  PubMed  Google Scholar 

  • Martínez-Gómez P, Sánchez-Pérez R, Rubio M (2012) Clarifying omics concepts, challenges and opportunities for Prunus breeding in the post-genomic era. OMICS: A J Integr Biol 16:268–283

    Google Scholar 

  • Mohan C, Satish L, Muthubharathi BC, Selvarajan D, Easterling M, Yau YY (2022) CRISPR-Cas technology: a genome-editing powerhouse for molecular plant breeding. Biotechnol Innov Environ Bioremediat 2022:803–879

    Article  Google Scholar 

  • Sánchez-Pérez R, Pavan S, Mazzeo R, Moldovan C, Cigliano RA, Del Cueto J, Ricciardi F, Lotti C, Ricciardi L, Dicenta F (2019) Mutation of a bHLH transcription factor allowed almond domestication. Science 364:1095–1098

    Article  PubMed  Google Scholar 

  • Shirasawa K, Isuzugawa K, Ikenaga M, Saito Y, Yamamoto T, Hirakawa H, Isobe S (2017) The genome sequence of sweet cherry (Prunus avium) for use in genomics-assisted breeding. DNA Res 24:499–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verde I, Abbott AG, Scalabrin S, Jung S, Shu SQ, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Int CF, Peach Genome I (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity. Domest Genome Evolut Nat Genet 45:487-U447

    CAS  Google Scholar 

  • Verde I, Jenkins J, Dondini L, Micali S, Pagliarani G, Vendramin E, Paris R, Aramini V, Gazza L, Rossini L (2017) The Peach v2. 0 release: high-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genom 18:1–18

    Article  Google Scholar 

  • Wang D, Zhang C, Wang B, Li B, Wang Q, Liu D, Wang H, Zhou Y, Shi L, Lan F, Wang W (2019) Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning. Nat Commun 10:4284

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Liu W, Zhu D, Zhou X, Hong P, Zhao H, Tan Y, Chen X, Zong X, Xu L (2020) A de Novo assembly of the sweet cherry (Prunus avium Cv. Tieton) genome using linked-read sequencing technology. Peer J 8:e9114

    Google Scholar 

  • Wenzhi J, Huanbin Z, Honghao B, Michael F, Weeks BY, Donald P (2013) Demonstration of CRISPR/Cas9/SgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188–e188

    Article  Google Scholar 

  • Zhang M-M, Wang Z-Q, Xu X, Huang S, Yin W-X, Luo C (2020) MfOfd1 is crucial for stress responses and virulence in the peach brown rot fungus Monilinia fructicola. Mol Plant Pathol 21:820–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang A, Zhou H, Jiang X, Han Y, Zhang X (2021a) The draft genome of a flat peach (Prunus Persica L. Cv. ‘124 Pan’) provides insights into its good fruit flavor traits. Plants 10:538

    Google Scholar 

  • Zhang H, Shen W, Zhang D, Shen X, Wang F, Hsiang T, Liu J, Li G (2021b) The bZIP transcription factor LtAP1 modulates oxidative stress tolerance and virulence in the peach gummosis fungus Lasiodiplodia theobromae. Front Microbiol 2021:12

    CAS  Google Scholar 

  • Zheng T, Li P, Zhuo X, Liu W, Qiu L, Li L, Yuan C, Sun L, Zhang Z, Wang J (2022) The chromosome-level genome provides insight into the molecular mechanism underlying the tortuous-branch phenotype of Prunus mume. New Phytol 235:141–156

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pedro Martínez-Gómez or Ángel Fernández i Martí .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martínez-Gómez, P., Sánchez-Pérez, R., Fernández i Martí, Á. (2023). Prospects and Future Questions. In: Sánchez-Pérez, R., Fernandez i Marti, A., Martinez-Gomez, P. (eds) The Almond Tree Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-30302-0_12

Download citation

Publish with us

Policies and ethics