Abstract
This paper presents Great-Nsolve, the integration of GreatSPN (with its user-friendly graphical interface and its numerous possibilities of stochastic Petri net analysis) and Nsolve (with its very efficient numerical solution methods) aimed at solving large Markov Regenerative Stochastic Petri Nets (MRSPN). The support for general distribution is provided by the alphaFactory library.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ajmone Marsan, M., Conte, G., Balbo, G.: A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems. ACM Trans. Comput. Sys. 2, 93–122 (1984)
Amparore, E.G., Donatelli, S.: DSPN-tool: a new DSPN and GSPN solver for GreatSPN. In: Proceedings of the 2010 Seventh International Conference on the Quantitative Evaluation of Systems, QEST 2010, Washington, DC, USA, pp. 79–80. IEEE Computer Society (2010). ISBN: 978-0-7695-4188-4, https://doi.org/10.1109/QEST.2010.17
Amparore, E.G.: A new greatSPN GUI for GSPN editing and CSLTA model checking. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 170–173. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10696-0_13
Amparore, E.G., Balbo, G., Beccuti, M., Donatelli, S., Franceschinis, G.: 30 years of GreatSPN. In: Fiondella, L., Puliafito, A. (eds.) Principles of Performance and Reliability Modeling and Evaluation. SSRE, pp. 227–254. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30599-8_9
Amparore, E.G., Buchholz, P., Donatelli, S.: A structured solution approach for Markov regenerative processes. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 9–24. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10696-0_3
Amparore, E.G., Donatelli, S.: Revisiting the matrix-free solution of Markov regenerative processes. Numer. Linear Algebra Appl. 18, 1067–1083 (2011)
Amparore, E.G., Donatelli, S.: A component-based solution for reducible Markov regenerative processes. Perform. Eval. 70(6), 400–422 (2013)
Amparore, E.G., Donatelli, S.: alphaFactory: a tool for generating the alpha factors of general distributions. In: Bertrand, N., Bortolussi, L. (eds.) QEST 2017. LNCS, vol. 10503, pp. 36–51. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66335-7_3
Babar, J., Beccuti, M., Donatelli, S., Miner, A.: GreatSPN enhanced with decision diagram data structures. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 308–317. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13675-7_19
Bause, F., Buchholz, P., Kemper, P.: A toolbox for functional and quantitative analysis of DEDS. In: Puigjaner, R., Savino, N.N., Serra, B. (eds.) TOOLS 1998. LNCS, vol. 1469, pp. 356–359. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-68061-6_32
Buchholz, P., Ciardo, G., Donatelli, S., Kemper, P.: Complexity of memory-efficient Kronecker operations with applications to the solution of Markov models. INFORMS J. Comput. 12(3), 203–222 (2000)
Buchholz, P.: Markov matrix market. http://ls4-www.cs.tu-dortmund.de/download/buchholz/struct-matrix-market.html
Buchholz, P.: Hierarchical structuring of superposed GSPNs. IEEE Trans. Softw. Eng. 25(2), 166–181 (1999)
Buchholz, P., Dayar, T., Kriege, J., Orhan, M.C.: On compact solution vectors in Kronecker-based Markovian analysis. Perform. Eval. 115, 132–149 (2017)
Buchholz, P., Kemper, P.: Kronecker based matrix representations for large Markov models. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 256–295. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24611-4_8
Choi, H., Kulkarni, V.G., Trivedi, K.S.: Markov regenerative stochastic Petri nets. Perform. Eval. 20(1–3), 337–357 (1994)
Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic properties with CSL\(^\text{ TA }\). IEEE Trans. Software Eng. 35(2), 224–240 (2009)
German, R.: Iterative analysis of Markov regenerative models. Perform. Eval. 44, 51–72 (2001)
Kordon, F., & all: Complete results for the 2019 edition of the Model Checking Contest (2019). http://mcc.lip6.fr/2019/results.php
Plateau, B., Fourneau, J.M.: A methodology for solving Markov models of parallel systems. J. Parallel Distrib. Comput. 12(4), 370–387 (1991)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Amparore, E.G., Buchholz, P., Donatelli, S. (2019). Great-Nsolve: A Tool Integration for (Markov Regenerative) Stochastic Petri Nets. In: Parker, D., Wolf, V. (eds) Quantitative Evaluation of Systems. QEST 2019. Lecture Notes in Computer Science(), vol 11785. Springer, Cham. https://doi.org/10.1007/978-3-030-30281-8_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-30281-8_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30280-1
Online ISBN: 978-3-030-30281-8
eBook Packages: Computer ScienceComputer Science (R0)