Skip to main content

WiseMove: A Framework to Investigate Safe Deep Reinforcement Learning for Autonomous Driving

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11785)

Abstract

WiseMove is a platform to investigate safe deep reinforcement learning (DRL) in the context of motion planning for autonomous driving. It adopts a modular architecture that mirrors our autonomous vehicle software stack and can interleave learned and programmed components. Our initial investigation focuses on a state-of-the-art DRL approach from the literature, to quantify its safety and scalability in simulation, and thus evaluate its potential use on our vehicle.

J. Lee, A. Balakrishnan, A. Gaurav and S. Sedwards—Contributed equally.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-30281-8_20
  • Chapter length: 5 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-30281-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Notes

  1. 1.

    uwaterloo.ca/waterloo-intelligent-systems-engineering-lab/.

  2. 2.

    therecord.com/news-story/8859691-waterloo-s-autonomoose-hits-100-kilometre-milestone/.

  3. 3.

    git.uwaterloo.ca/wise-lab/wise-move/.

  4. 4.

    gym.openai.com.

  5. 5.

    keras.io.

  6. 6.

    github.com/keras-rl/keras-rl.

  7. 7.

    Details and scripts to reproduce our results can be found in our repository (see Footnote 3).

References

  1. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning (2015). http://arxiv.org/abs/1509.02971

  2. Mnih, V., et al.: Playing Atari with deep reinforcement learning (2013). http://arxiv.org/abs/11312.5602

  3. Paden, B., Čáp, M., Yong, S.Z., Yershov, D., Frazzoli, E.: A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Trans. Intell. Veh. 1(1), 33–55 (2016)

    CrossRef  Google Scholar 

  4. Paxton, C., Raman, V., Hager, G.D., Kobilarov, M.: Combining neural networks and tree search for task and motion planning in challenging environments. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, pp. 6059–6066 (2017)

    Google Scholar 

  5. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016)

    CrossRef  Google Scholar 

  6. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

Download references

Acknowledgment

This work is supported by the Japanese Science and Technology agency (JST) ERATO project JPMJER1603: HASUO Metamathematics for Systems Design, and by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant: Model-Based Synthesis and Safety Assurance of Intelligent Controllers for Autonomous Vehicles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Czarnecki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Lee, J., Balakrishnan, A., Gaurav, A., Czarnecki, K., Sedwards, S. (2019). WiseMove: A Framework to Investigate Safe Deep Reinforcement Learning for Autonomous Driving. In: Parker, D., Wolf, V. (eds) Quantitative Evaluation of Systems. QEST 2019. Lecture Notes in Computer Science(), vol 11785. Springer, Cham. https://doi.org/10.1007/978-3-030-30281-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30281-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30280-1

  • Online ISBN: 978-3-030-30281-8

  • eBook Packages: Computer ScienceComputer Science (R0)