Skip to main content

Modification of Parallelization of Modified Merge Sort Algorithm

  • Conference paper
  • First Online:
Information and Software Technologies (ICIST 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1078))

Included in the following conference series:

Abstract

An important issue in sorting large data sets in the NoSQL databases is the ability to sort process parallelism in order to accelerate the application. The work presents the use of the parallelized method for merging strings in a modified merge sort algorithm. The static tests of the proposed sort algorithm verify the stability and the theoretical time complexity of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shi, H., Schaeffer, J.: Parallel sorting by regular sampling. J. Parallel Distrib. Comput. 14(4), 361–372 (1992)

    Article  Google Scholar 

  2. Preparata, F.P.: New parallel-sorting schemes. IEEE Trans. Comput. 7, 669–673 (1978)

    Article  MathSciNet  Google Scholar 

  3. Rajasekaran, S., Reif, J.H.: Optimal and sublogarithmic time randomized parallel sorting algorithms. SIAM J. Comput. 18(3), 594–607 (1989)

    Article  MathSciNet  Google Scholar 

  4. Hirschberg, D.S.: Fast parallel sorting algorithms. Commun. ACM 21(8), 657–661 (1978)

    Article  MathSciNet  Google Scholar 

  5. WƂodarczyk-Sielicka, M., Wawrzyniak, N.: Problem of bathymetric big data interpolation for inland mobile navigation system. In: Damaơevičius, R., Mikaơytė, V. (eds.) ICIST 2017. CCIS, vol. 756, pp. 611–621. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67642-5_51

    Chapter  Google Scholar 

  6. Wlodarczyk-Sielicka, M., Stateczny, A.: General concept of reduction process for big data obtained by interferometric methods. In: 2017 18th International Radar Symposium (IRS), pp. 1–10. IEEE (2017)

    Google Scholar 

  7. MarszaƂek, Z.: Parallelization of modified merge sort algorithm. Symmetry 9(9), 176 (2017)

    Article  Google Scholar 

  8. Gabryel, M.: A bag-of-features algorithm for applications using a NoSQL database. In: Dregvaite, G., Damasevicius, R. (eds.) ICIST 2016. CCIS, vol. 639, pp. 332–343. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46254-7_26

    Chapter  Google Scholar 

  9. MarszaƂek, Z.: Performance tests on merge sort and recursive merge sort for big data processing. Tech. Sci. 21(1), 19–35 (2018)

    Google Scholar 

  10. MarszaƂek, Z.: Novel recursive fast sort algorithm. In: Dregvaite, G., Damasevicius, R. (eds.) ICIST 2016. CCIS, vol. 639, pp. 344–355. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46254-7_27

    Chapter  Google Scholar 

  11. MarszaƂek, Z.: Parallelization of fast sort algorithm. In: Damaơevičius, R., Mikaơytė, V. (eds.) ICIST 2017. CCIS, vol. 756, pp. 408–421. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67642-5_34

    Chapter  Google Scholar 

  12. MarszaƂek, Z.: Modification of parallelization for fast sort algorithm. In: Damaơevičius, R., Vasiljevienė, G. (eds.) ICIST 2018. CCIS, vol. 920, pp. 270–278. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99972-2_21

    Chapter  Google Scholar 

  13. Lucas, K.T., Jana, P.K.: An efficient parallel sorting algorithm on OTIS mesh of trees. In: 2009 IEEE International Advance Computing Conference, pp. 175–180. IEEE, March 2009

    Google Scholar 

  14. Satish, N., Harris, M., Garland, M.: Designing efficient sorting algorithms for manycore GPUs. In: 2009 IEEE International Symposium on Parallel & Distributed Processing, pp. 1–10. IEEE, May 2009

    Google Scholar 

  15. Durad, M.H., Akhtar, M.N.: Performance analysis of parallel sorting algorithms using MPI. In: 2014 12th International Conference on Frontiers of Information Technology, pp. 202–207. IEEE, December 2014

    Google Scholar 

  16. MarszaƂek, Z., WoĆșniak, M., PoƂap, D.: Fully flexible parallel merge sort for multicore architectures. Complexity 2018 (2018)

    Google Scholar 

Download references

Acknowledgement

The project is financed by the Polish National Agency for Academic Exchange no PPI/APM/2018/1/00004/U/001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew MarszaƂek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

MarszaƂek, Z., Capizzi, G. (2019). Modification of Parallelization of Modified Merge Sort Algorithm. In: Damaơevičius, R., Vasiljevienė, G. (eds) Information and Software Technologies. ICIST 2019. Communications in Computer and Information Science, vol 1078. Springer, Cham. https://doi.org/10.1007/978-3-030-30275-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30275-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30274-0

  • Online ISBN: 978-3-030-30275-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics