Skip to main content

Application of EEG Metrics in the Decision-Making Process

  • Conference paper
  • First Online:
Experimental and Quantitative Methods in Contemporary Economics (CMEE 2018)

Abstract

The decision-making process is a complex task uses the multi-criteria methods in the formalized decision support. Decisions are direct reflection of decision maker preferences. Multi-criteria methods use different methodological approaches (algorithms) to determine the final assessment of decision variants (e.g., ranking). Decision maker must do many actions (partial evaluations) in some of these methods. Issues of the decision maker’s engagement in the assessment process arise which can be identified using measurements by EEG. It is possible to identify various internal processes occurring with the decision maker during individual stages of the calculation procedure. Various types of EEG metrics are used for this, such as the index of frontal asymmetry, engagement, distraction, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grünig, R., Kühn, R.: Successful Decision-Making. A Systematic Approach to Complex Problems, 3rd edn. Springer, Berlin (2013)

    Google Scholar 

  2. Pei, Z.: Rational decision making models with incomplete weight information for production line assessment. Inf. Sci. 222, 696–716 (2013). https://doi.org/10.1016/j.ins.2012.07.060

    Article  Google Scholar 

  3. Aronson, E., Wilson, T.D., Akert, R.M.: Social Psychology, 9th edn. Pearson, Boston (2016)

    Google Scholar 

  4. Kahneman, D.: Thinking, Fast and Slow. Penguin Books, London (2012)

    Google Scholar 

  5. Wang, Y.: The Theoretical Framework of Cognitive Informatics. Int. J. Cognitive Inform. Nat. Intell. 1, 1–27 (2007). https://doi.org/10.4018/jcini.2007010101

    Article  Google Scholar 

  6. von Winterfeldt, D., Edwards, W.: Decision Analysis and Behavioral Research. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  7. Roy, B.: Multicriteria Methodology for Decision Aiding. Springer, US (1996)

    Book  Google Scholar 

  8. Vincke, P.: Multicriteria Decision-Aid. J. Wiley, New York (1992)

    Google Scholar 

  9. International Society on MCDM.: Multiple criteria decision making. http://www.mcdmsociety.org (2015). Accessed 22 Apr 2016

  10. Mota, P., Campos, A.R., Neves-Silva, R.: First look at MCDM: Choosing a decision method. Adv. Smart Syst. Res. 3, 25–30 (2013)

    Google Scholar 

  11. Figueira, J., Greco, S., Ehrgott, M.: Multiple Criteria Decision Analysis State of the Art Surveys. Springer, New York (2005)

    Book  Google Scholar 

  12. Huang, I.B., Keisler, J., Linkov, I.: Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. Sci. Total Environ. 409, 3578–3594 (2011). https://doi.org/10.1016/j.scitotenv.2011.06.022

    Article  Google Scholar 

  13. Hwang, C.-L., Yoon, K.: Multiple Attribute Decision Making. Springer, Berlin, Heidelberg (1981)

    Book  Google Scholar 

  14. Karczmarczyk, A., Jankowski, J., Wątróbski, J.: Multi-criteria decision support for planning and evaluation of performance of viral marketing campaigns in social networks. PLoS ONE 13, e0209372 (2018). https://doi.org/10.1371/journal.pone.0209372

    Article  Google Scholar 

  15. Nermend, K.: Metody analizy wielokryterialnej i wielowymiarowej we wspomaganiu decyzji (in Polish). Wydawnictwo Naukowe PWN, Warszawa (2017)

    Google Scholar 

  16. Piwowarski, M., Miłaszewicz, D., Łatuszyńska, M., et al.: Application of the vector measure construction method and technique for order preference by similarity ideal solution for the analysis of the dynamics of changes in the poverty levels in the European union countries. Sustainability 10, 2858 (2018). https://doi.org/10.3390/su10082858

    Article  Google Scholar 

  17. Roy, B.: Multicriteria Methodology for Decision Aiding. Springer, New York, NY (2013)

    Google Scholar 

  18. Wątróbski, J., Jankowski, J., Ziemba, P., et al.: Generalised framework for multi-criteria method selection. Omega 86, 107–124 (2019). https://doi.org/10.1016/j.omega.2018.07.004

    Article  Google Scholar 

  19. Zanakis, S.H., Solomon, A., Wishart, N., Dublish, S.: Multi-attribute decision making: A simulation comparison of select methods. Eur. J. Oper. Res. 107, 507–529 (1998). https://doi.org/10.1016/S0377-2217(97)00147-1

    Article  Google Scholar 

  20. Saaty, T.L.: Fundamentals of Decision Making and Priority Theory With the Analytic Hierarchy Process. RWS Publications, Pittsburg (2000)

    Google Scholar 

  21. Saaty, T.L.: Decision Making with Dependence and Feedback: The Analytic Network Process. RWS Publications, Pittsburg (1996)

    Google Scholar 

  22. Cypryjański, J., Grzesiuk, A.: Expressing our preferences with the use of AHP: The game is not worth the candle? In: Nermend, K., Łatuszyńska, M. (eds.) Problems, Methods and Tools in Experimental and Behavioral Economics, pp. 155–165. Springer, Cham (2018)

    Chapter  Google Scholar 

  23. Ziemba, P., Wątróbski, J., Jankowski,J., Piwowarski, M.: Research on the properties of the AHP in the environment of inaccurate expert evaluations. In: Nermend, K., Łatuszyńska, M (eds) Selected Issues in Experimental Economics: Proceedings of the 2015 Computational Methods in Experimental Economics (CMEE) Conference. Springer International Publishing, Cham, pp 227–243 (2016)

    Chapter  Google Scholar 

  24. Nermend, K., Piwowarski, M.: Cognitive neuroscience techniques in supporting decision making and the analysis of social campaign, pp. 1–13. Ishik Univeristy, Erbil, Iraq (2018)

    Google Scholar 

  25. Bear, M.F., Connors, B.W., Paradiso, M.A.: Neuroscience: Exploring the Brain, 3rd edn. Lippincott Williams & Wilkins, Baltimore, Md (2007)

    Google Scholar 

  26. Nunez, P, Srinavasan, R.: Electric fields of the brain (2006)

    Google Scholar 

  27. Malmivuo, J., Plonsey, R.: Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford Univ. Press, New York, NY (1995)

    Book  Google Scholar 

  28. Sharbrough, F., Chatrian, G.E., Lesser, R., et al.: American Electroencephalographic Society guidelines for standard electrode position nomenclature (1991)

    Google Scholar 

  29. Ahern, G.L., Schwartz, G.E.: Differential lateralization for positive and negative emotion in the human brain: EEG spectral analysis. Neuropsychologia 23, 745–755 (1985). https://doi.org/10.1016/0028-3932(85)90081-8

    Article  Google Scholar 

  30. Coan, J.A., Allen, J.J.B.: Frontal EEG asymmetry as a moderator and mediator of emotion. Biol. Psychol. 67, 7–50 (2004). https://doi.org/10.1016/j.biopsycho.2004.03.002

    Article  Google Scholar 

  31. Harmon-Jones, E., Gable, P.A., Peterson, C.K.: The role of asymmetric frontal cortical activity in emotion-related phenomena: A review and update. Biol. Psychol. 84, 451–462 (2010). https://doi.org/10.1016/j.biopsycho.2009.08.010

    Article  Google Scholar 

  32. Smith, E.E., Reznik, S.J., Stewart, J.L., Allen, J.J.B.: Assessing and conceptualizing frontal EEG asymmetry: An updated primer on recording, processing, analyzing, and interpreting frontal alpha asymmetry. Int. J. Psychophysiol. 111, 98–114 (2017). https://doi.org/10.1016/j.ijpsycho.2016.11.005

    Article  Google Scholar 

  33. Stewart, J.L., Bismark, A.W., Towers, D.N., et al.: Resting frontal EEG asymmetry as an endophenotype for depression risk: Sex-specific patterns of frontal brain asymmetry. J. Abnorm. Psychol. 119, 502–512 (2010). https://doi.org/10.1037/a0019196

    Article  Google Scholar 

  34. Nusslock, R., Shackman, A.J., Harmon-Jones, E., et al.: Cognitive vulnerability and frontal brain asymmetry: Common predictors of first prospective depressive episode. J. Abnorm. Psychol. 120, 497–503 (2011). https://doi.org/10.1037/a0022940

    Article  Google Scholar 

  35. Blackhart, G.C., Kline, J.P., Donohue, K.F., et al.: Affective responses to EEG preparation and their link to resting anterior EEG asymmetry. Pers. Individ. Differ. 32, 167–174 (2002). https://doi.org/10.1016/S0191-8869(01)00015-0

    Article  Google Scholar 

  36. Towers, D.N., Allen, J.J.B.: A better estimate of the internal consistency reliability of frontal EEG asymmetry scores. Psychophysiology 46, 132–142 (2009). https://doi.org/10.1111/j.1469-8986.2008.00759.x

    Article  Google Scholar 

  37. Cook, I.A., O’Hara, R., Uijtdehaage, S.H.J., et al.: Assessing the accuracy of topographic EEG mapping for determining local brain function. Electroencephalogr. Clin. Neurophysiol. 107, 408–414 (1998). https://doi.org/10.1016/S0013-4694(98)00092-3

    Article  Google Scholar 

  38. Davidson, R.J., Chapman, J.P., Chapman, L.J., Henriques, J.B.: Asymmetrical brain electrical activity discriminates between psychometrically-matched verbal and spatial cognitive tasks. Psychophysiology 27, 528–543 (1990). https://doi.org/10.1111/j.1469-8986.1990.tb01970.x

    Article  Google Scholar 

  39. Tops, M., Boksem, M.A.S.: Absorbed in the task: Personality measures predict engagement during task performance as tracked by error negativity and asymmetrical frontal activity. Cognitive Affect. Behav. Neurosci. 10, 441–453 (2010). https://doi.org/10.3758/CABN.10.4.441

    Article  Google Scholar 

  40. Pintrich, P.R., de Groot, E.V.: Motivational and self-regulated learning components of classroom academic performance. J. Educ. Psychol. 82, 33–40 (1990). https://doi.org/10.1037/0022-0663.82.1.33

    Article  Google Scholar 

  41. Csikszentmihalyi, M.: Flow: The psychology of optimal experience. Nachdr, Harper [and] Row, New York (2009)

    Google Scholar 

  42. O’Brien, H.L., Toms, E.G.: What is user engagement? A conceptual framework for defining user engagement with technology. J. Am. Soc. Inform. Sci. Technol. 59, 938–955 (2008). https://doi.org/10.1002/asi.20801

    Article  Google Scholar 

  43. Mcmahan, T., Parberry, I., Parsons, T.: Evaluating Electroencephalography Engagement Indices during Video Game Play (2015)

    Google Scholar 

  44. Berka, C., Levendowski, D.J., Lumicao, M.N., et al.: EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviat. Space Environ. Med. 78(Supplement 1), B231–B244(14) (2007a)

    Google Scholar 

  45. Freeman, F.G., Mikulka, P.J., Prinzel, L.J., Scerbo, M.W.: Evaluation of an adaptive automation system using three EEG indices with a visual tracking task. Biol. Psychol. 50, 61–76 (1999). https://doi.org/10.1016/S0301-0511(99)00002-2

    Article  Google Scholar 

  46. Pope, A.T., Bogart, E.H., Bartolome, D.S.: Biocybernetic system evaluates indices of operator engagement in automated task. Biol. Psychol. 40, 187–195 (1995). https://doi.org/10.1016/0301-0511(95)05116-3

    Article  Google Scholar 

  47. Gevins, A.: High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cereb. Cortex 7, 374–385 (1997). https://doi.org/10.1093/cercor/7.4.374

    Article  Google Scholar 

  48. Smith, M.E., Gevins, A.: Neurophysiologic monitoring of mental workload and fatigue during operation of a flight simulator. In: Caldwell, J.A., Wesensten, N.J. (eds.) Orlando, p. 116. Florida, USA (2005)

    Google Scholar 

  49. Yamada, F.: Frontal midline theta rhythm and eyeblinking activity during a VDT task and a video game: useful tools for psychophysiology in ergonomics. Ergonomics 41, 678–688 (1998). https://doi.org/10.1080/001401398186847

    Article  Google Scholar 

  50. Lin, C-T., Chen, S-A., Ko, L-W., Wang, Y-K.: EEG-based brain dynamics of driving distraction. In: The 2011 International Joint Conference on Neural Networks. IEEE, San Jose, CA, USA, pp. 1497–1500 (2011)

    Google Scholar 

  51. Almahasneh, H., Chooi, W.-T., Kamel, N., Malik, A.S.: Deep in thought while driving: An EEG study on drivers’ cognitive distraction. Transp. Res. Part F Traffic Psychol. Behav. 26, 218–226 (2014). https://doi.org/10.1016/j.trf.2014.08.001

    Article  Google Scholar 

  52. Bajwa, G., Fazeen, M., Dantu, R.: Detecting driver distraction using stimuli-response EEG analysis. (2019). arXiv:190409100 [cs]

  53. Berka, C., Levendowski, D.J., Lumicao, M.N., et al.: EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviat. Space Environ. Med. 78(Supplement 1), B231–B244(14) (2007b)

    Google Scholar 

  54. Borawski, M.: Use of computer game as an element of social campaign focusing attention on reliability of information in the internet. In: Nermend, K., Łatuszyńska, M. (eds.) Problems, Methods and Tools in Experimental and Behavioral Economics, pp. 127–139. Springer, Cham (2018)

    Chapter  Google Scholar 

  55. Summerfield, C., Mangels, J.A.: Coherent theta-band EEG activity predicts item-context binding during encoding. NeuroImage 24, 692–703 (2005). https://doi.org/10.1016/j.neuroimage.2004.09.012

    Article  Google Scholar 

  56. Werkle-Bergner, M., Müller, V., Li, S.-C., Lindenberger, U.: Cortical EEG correlates of successful memory encoding: Implications for lifespan comparisons. Neurosci. Biobehav. Rev. 30, 839–854 (2006). https://doi.org/10.1016/j.neubiorev.2006.06.009

    Article  Google Scholar 

  57. Davidson, R.J.: What does the prefrontal cortex “do” in affect: perspectives on frontal EEG asymmetry research. Biol. Psychol. 67, 219–234 (2004). https://doi.org/10.1016/j.biopsycho.2004.03.008

    Article  Google Scholar 

  58. Astolfi, L., De Vico, Fallani F., Cincotti, F., et al.: Neural basis for brain responses to TV commercials: A High-resolution EEG study. IEEE Trans. Neural Syst. Rehabil. Eng. 16, 522–531 (2008). https://doi.org/10.1109/TNSRE.2008.2009784

    Article  Google Scholar 

  59. Mauss, I.B., Robinson, M.D.: Measures of emotion: A review. Cogn. Emot. 23, 209–237 (2009). https://doi.org/10.1080/02699930802204677

    Article  Google Scholar 

Download references

Acknowledgements

The project financed within the Regional Excellence Initiative programme of the Minister of Science and Higher Education of Poland, years 2019-2022, project no. 001/RID/2018/19, financing 10 684 000,00 PLN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateusz Piwowarski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Piwowarski, M., Singh, U.S., Nermend, K. (2020). Application of EEG Metrics in the Decision-Making Process. In: Nermend, K., Łatuszyńska, M. (eds) Experimental and Quantitative Methods in Contemporary Economics. CMEE 2018. Springer Proceedings in Business and Economics. Springer, Cham. https://doi.org/10.1007/978-3-030-30251-1_14

Download citation

Publish with us

Policies and ethics