Skip to main content

Online Optimization of Movement Cost for Robotic Applications of PSO

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2019)

Abstract

Particle Swarm Optimization is an optimization algorithm that can be used as a control mechanism in robotic tasks, especially robotic search. Existing algorithms are tuned to use as little evaluations of the objective function as possible. Measuring the objective with a sensor usually has a low cost in terms of time and energy compared to moving the robot. We propose a new algorithm to optimize the particle movement in SMPSO that samples the same points in the environment with less movement cost. Our experiments show that the average movement cost can be reduced by \(50\%\) or more in all test problems we used. The huge gain shows that there is a big potential in adapting swarm intelligence algorithms to robotic applications by optimizing them to better serve the constraints of the application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://ci.ovgu.de/Research/Codes.html.

References

  1. Bartashevich, P., Koerte, D., Mostaghim, S.: Energy-saving decision making for aerial swarms: PSO-based navigation in vector fields. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8. IEEE, Honolulu, November 2017

    Google Scholar 

  2. Bosman, P.A.N., Thierens, D.: The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 7(2), 174–188 (2003)

    Article  Google Scholar 

  3. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: Test problems for large-scale multiobjective and many-objective optimization. IEEE Trans. Cybern. PP(99), 1–14 (2016)

    Article  Google Scholar 

  4. Couceiro, M.S., Rocha, R.P., Ferreira, N.M.F.: A novel multi-robot exploration approach based on particle swarm optimization algorithms. In 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 327–332. IEEE, Kyoto (2011)

    Google Scholar 

  5. Dadgar, M., Jafari, S., Hamzeh, A.: A PSO-based multi-robot cooperation method for target searching in unknown environments. Neurocomputing 177, 62–74 (2016)

    Article  Google Scholar 

  6. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: IEEE Congress on Evolutionary Computation (CEC), pp. 825–830. IEEE, Honolulu (2002)

    Google Scholar 

  7. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)

    Article  Google Scholar 

  8. Inácio, F.R., Macharet, D.G., Chaimowicz, L.: Pso-based strategy for the segregation of heterogeneous robotic swarms. J. Comput. Sci. 31, 86–94 (2018)

    Article  Google Scholar 

  9. Jatmiko, W., et al.: Robots implementation for odor source localization using PSO algorithm. WSEAS Trans. Circ. Syst. 10(4), 115–125 (2011)

    Google Scholar 

  10. Krishnanand, K.N., Ghose, D.: A glowworm swarm optimization based multi-robot system for signal source localization. In: Liu, D., Wang, L., Tan, K.C. (eds.) Design and Control of Intelligent Robotic Systems. SCI, pp. 49–68. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-89933-4_3

    Chapter  Google Scholar 

  11. Mai, S., Zille, H., Steup, C., Mostaghim, S.: Multi-objective collective search and movement-based metrics in swarm robotics. In: Genetic and Evolutionary Computation Conference Companion (GECCO 2019 Companion). ACM, Prague (2019)

    Google Scholar 

  12. Mostaghim, S., Steup, C., Witt, F.: Energy aware particle swarm optimization as search mechanism for aerial micro-robots. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–7. IEEE, Athens, December 2016

    Google Scholar 

  13. Nebro, A.J., Durillo, J.J., Garcia-Nieto, J., Coello, C.A., Luna, F., Alba, E.: SMPSO: a new PSO-based metaheuristic for multi-objective optimization. In: 2009 IEEE Symposium on Computational Intelligence in Multi-criteria Decision-Making (MCDM), pp. 66–73. IEEE, Nashville, March 2009

    Google Scholar 

  14. Nedjah, N., De Mendonça, R.M., De Macedo Mourelle, L.: PSO-based distributed algorithm for dynamic task allocation in a robotic swarm. Procedia Comput. Sci. 51(1), 326–335 (2015)

    Article  Google Scholar 

  15. Pugh, J., Martinoli, A.: Inspiring and modeling multi-robot search with particle swarm optimization. In: 2007 IEEE Swarm Intelligence Symposium, pp. 332–339. IEEE, Honolulu, April 2007

    Google Scholar 

  16. Senanayake, M., Senthooran, I., Barca, J.C., Chung, H., Kamruzzaman, J., Murshed, M.: Search and tracking algorithms for swarms of robots: a survey. Robot. Auton. Syst. 75, 422–434 (2016)

    Article  Google Scholar 

  17. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: Platemo: a MATLAB platform for evolutionary multi-objective optimization. CoRR, abs/1701.00879, 1–20 (2017)

    Google Scholar 

  18. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Mai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mai, S., Zille, H., Steup, C., Mostaghim, S. (2019). Online Optimization of Movement Cost for Robotic Applications of PSO. In: Moura Oliveira, P., Novais, P., Reis, L. (eds) Progress in Artificial Intelligence. EPIA 2019. Lecture Notes in Computer Science(), vol 11805. Springer, Cham. https://doi.org/10.1007/978-3-030-30244-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30244-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30243-6

  • Online ISBN: 978-3-030-30244-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics