Skip to main content

SimpleLSTM: A Deep-Learning Approach to Simple-Claims Classification

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11805))

Included in the following conference series:

  • 1703 Accesses

Abstract

The information on the internet suffers from noise and corrupt knowledge that may arise due to human and mechanical errors. To further exacerbate this problem, an ever-increasing amount of fake news on social media, or internet in general, has created another challenge to drawing correct information from the web. This huge sea of data makes it difficult for human fact checkers and journalists to assess all the information manually. In recent years Automated Fact-Checking has emerged as a branch of natural language processing devoted to achieving this feat. In this work, we give an overview of recent approaches, emphasizing on the key challenges faced during the development of such frameworks. We test existing solutions to perform claim classification on simple-claims and introduce a new model dubbed SimpleLSTM, which outperforms baselines by 11%, 10.2% and 18.7% on FEVER-Support, FEVER-Reject and 3-Class datasets respectively. The data, metadata and code are released as open-source and will be available at https://github.com/DeFacto/SimpleLSTM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.politifact.com/.

  2. 2.

    https://www.snopes.com/.

  3. 3.

    https://www.factcheck.org/.

  4. 4.

    http://www.fakenewschallenge.org/.

  5. 5.

    http://fever.ai.

  6. 6.

    https://wiki.dbpedia.org/.

  7. 7.

    https://www.wikipedia.org/.

  8. 8.

    https://azure.microsoft.com/en-us/services/cognitive-services/bing-web-search-api/.

  9. 9.

    GridSearchCV from scikit-learn to obtain the best hyper-parameters.

  10. 10.

    github.com/explosion/spaCy.

  11. 11.

    https://code.google.com/archive/p/word2vec/.

References

  1. Akbik, A., Blythe, D., Vollgraf, R.: Contextual string embeddings for sequence labeling. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 1638–1649 (2018)

    Google Scholar 

  2. Baly, R., Karadzhov, G., Alexandrov, D., Glass, J.R., Nakov, P.: Predicting factuality of reporting and bias of news media sources. CoRR abs/1810.01765 (2018). http://arxiv.org/abs/1810.01765

  3. Baly, R., Mohtarami, M., Glass, J.R., Màrquez, L., Moschitti, A., Nakov, P.: Integrating stance detection and fact checking in a unified corpus. CoRR abs/1804.08012 (2018). http://arxiv.org/abs/1804.08012

  4. Chen, D., Fisch, A., Weston, J., Bordes, A.: Reading wikipedia to answer open-domain questions. arXiv preprint arXiv:1704.00051 (2017)

  5. Ciampaglia, G.L., Shiralkar, P., Rocha, L.M., Bollen, J., Menczer, F., Flammini, A.: Computational fact checking from knowledge networks. PLoS ONE 10(6), e0128193 (2015)

    Article  Google Scholar 

  6. Conforti, C., Pilehvar, M.T., Collier, N.: Towards automatic fake news detection: cross-level stance detection in news articles. In: Proceedings of the First Workshop on Fact Extraction and VERification (FEVER), pp. 40–49 (2018)

    Google Scholar 

  7. Esteves, D., Reddy, A.J., Chawla, P., Lehmann, J.: Belittling the source: trustworthiness indicators to obfuscate fake news on the web. In: Proceedings of the First Workshop on Fact Extraction and Verification (FEVER), pp. 50–59. Association for Computational Linguistics (2018). http://aclweb.org/anthology/W18-5508

  8. Fridkin, K., Kenney, P.J., Wintersieck, A.: Liar, liar, pants on fire: How fact-checking influences citizens’ reactions to negative advertising. Polit. Commun. 32(1), 127–151 (2015). https://doi.org/10.1080/10584609.2014.914613

    Article  Google Scholar 

  9. Gardner, M., et al.: AllenNLP: a deep semantic natural language processing platform (2017)

    Google Scholar 

  10. Gatt, A., Krahmer, E.: Survey of the state of the art in natural language generation: core tasks, applications and evaluation. J. Artif. Intell. Res. 61, 65–170 (2018)

    Article  MathSciNet  Google Scholar 

  11. Gerber, D., et al.: Defacto–temporal and multilingual deep fact validation. Web Semant.: Sci. Serv. Agents World Wide Web 35, 85–101 (2015)

    Article  Google Scholar 

  12. Graves, L., Cherubini, F.: The rise of fact-checking sites in Europe (2016)

    Google Scholar 

  13. Hanselowski, A., et al.: A retrospective analysis of the fake news challenge stance detection task. arXiv preprint arXiv:1806.05180 (2018)

  14. Hassan, N., et al.: The quest to automate fact-checking. World (2015)

    Google Scholar 

  15. Himma-Kadakas, M., et al.: Alternative facts and fake news entering journalistic content production cycle. Cosmopolitan Civil Soc.: Interdisc. J. 9(2), 25 (2017)

    Google Scholar 

  16. Lee, N., Wu, C.S., Fung, P.: Improving large-scale fact-checking using decomposable attention models and lexical tagging. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 1133–1138 (2018)

    Google Scholar 

  17. Li, S., Zhao, S., Cheng, B., Yang, H.: An end-to-end multi-task learning model for fact checking. In: Proceedings of the First Workshop on Fact Extraction and Verification (FEVER), pp. 138–144. Association for Computational Linguistics (2018). http://aclweb.org/anthology/W18-5523

  18. Mihaylova, T., et al.: Fact checking in community forums. CoRR abs/1803.03178 (2018). http://arxiv.org/abs/1803.03178

  19. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. CoRR abs/1310.4546 (2013). http://arxiv.org/abs/1310.4546

  20. Palau, R.M., Moens, M.F.: Argumentation mining: the detection, classification and structure of arguments in text. In: Proceedings of the 12th International Conference on Artificial Intelligence and Law, pp. 98–107. ACM (2009)

    Google Scholar 

  21. Parikh, A.P., Täckström, O., Das, D., Uszkoreit, J.: A decomposable attention model for natural language inference. In: EMNLP (2016)

    Google Scholar 

  22. Peldszus, A., Stede, M.: From argument diagrams to argumentation mining in texts: a survey. Int. J. Cogn. Inform. Nat. Intell. (IJCINI) 7(1), 1–31 (2013)

    Article  Google Scholar 

  23. Popat, K., Mukherjee, S., Strötgen, J., Weikum, G.: Where the truth lies: explaining the credibility of emerging claims on the web and social media. In: Proceedings of the 26th International Conference on World Wide Web Companion, pp. 1003–1012. International World Wide Web Conferences Steering Committee (2017)

    Google Scholar 

  24. Popat, K., Mukherjee, S., Yates, A., Weikum, G.: Declare: debunking fake news and false claims using evidence-aware deep learning. CoRR abs/1809.06416 (2018). http://arxiv.org/abs/1809.06416

  25. Rashkin, H., Choi, E., Jang, J.Y., Volkova, S., Choi, Y.: Truth of varying shades: analyzing language in fake news and political fact-checking. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 2931–2937. Association for Computational Linguistics (2017). https://doi.org/10.18653/v1/D17-1317. http://aclweb.org/anthology/D17-1317

  26. Reddy, A.J., Rocha, G., Esteves, D.: DeFactoNLP: fact verification using entity recognition, TFIDF vector comparison and decomposable attention. CoRR abs/1809.00509 (2018)

    Google Scholar 

  27. Taniguchi, M., Taniguchi, T., Takahashi, T., Miura, Y., Ohkuma, T.: Integrating entity linking and evidence ranking for fact extraction and verification. In: Proceedings of the First Workshop on Fact Extraction and Verification (FEVER), pp. 124–126 (2018)

    Google Scholar 

  28. Thorne, J., Vlachos, A.: Automated fact checking: task formulations, methods and future directions. arXiv preprint arXiv:1806.07687 (2018)

  29. Thorne, J., Vlachos, A., Christodoulopoulos, C., Mittal, A.: FEVER: a large-scale dataset for fact extraction and verification. CoRR abs/1803.05355 (2018). http://arxiv.org/abs/1803.05355

  30. Thorne, J., Vlachos, A., Christodoulopoulos, C., Mittal, A.: Fever: a large-scale dataset for fact extraction and verification. arXiv preprint arXiv:1803.05355 (2018)

  31. Thorne, J., Vlachos, A., Cocarascu, O., Christodoulopoulos, C., Mittal, A.: The fact extraction and verification (fever) shared task. arXiv preprint arXiv:1811.10971 (2018)

  32. Tosik, M., Mallia, A., Gangopadhyay, K.: Debunking fake news one feature at a time. arXiv preprint arXiv:1808.02831 (2018)

  33. Villata, S., Boella, G., Gabbay, D.M., van der Torre, L.: Arguing about the trustworthiness of the information sources. In: Liu, W. (ed.) ECSQARU 2011. LNCS (LNAI), vol. 6717, pp. 74–85. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22152-1_7

    Chapter  Google Scholar 

  34. Vlachos, A., Riedel, S.: Fact checking: task definition and dataset construction. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 18–22 (2014)

    Google Scholar 

  35. Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018)

    Article  Google Scholar 

  36. Witschge, T., Nygren, G.: Journalistic work: a profession under pressure? J. Media Bus. Stud. 6(1), 37–59 (2009)

    Article  Google Scholar 

  37. Yang, Y., Zheng, L., Zhang, J., Cui, Q., Li, Z., Yu, P.S.: TI-CNN: convolutional neural networks for fake news detection. CoRR abs/1806.00749 (2018). http://arxiv.org/abs/1806.00749

  38. Yin, W., Roth, D.: TwoWingOS: a two-wing optimization strategy for evidential claim verification. CoRR abs/1808.03465 (2018). http://arxiv.org/abs/1808.03465

Download references

Acknowledgement

This work was partially funded by the European Union Marie Curie ITN Cleopatra project (GA no. 812997).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Esteves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chawla, P., Esteves, D., Pujar, K., Lehmann, J. (2019). SimpleLSTM: A Deep-Learning Approach to Simple-Claims Classification. In: Moura Oliveira, P., Novais, P., Reis, L. (eds) Progress in Artificial Intelligence. EPIA 2019. Lecture Notes in Computer Science(), vol 11805. Springer, Cham. https://doi.org/10.1007/978-3-030-30244-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30244-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30243-6

  • Online ISBN: 978-3-030-30244-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics