Skip to main content

The Reverse Mathematics of wqos and bqos

  • Chapter
  • First Online:

Part of the book series: Trends in Logic ((TREN,volume 53))

Abstract

In this paper we survey wqo and bqo theory from the reverse mathematics perspective. We consider both elementary results (such as the equivalence of different definitions of the concepts, and basic closure properties) and more advanced theorems. The classification from the reverse mathematics viewpoint of both kinds of results provides interesting challenges, and we cover also recent advances on some long standing open problems.

I thank Marta Fiori Carones and Emanuele Frittaion who carefully read an earlier draft of this paper.

Research partially supported by PRIN 2012 Grant “Logica, Modelli e Insiemi”.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Blass, A., & Gurevich, Y. (2008). Program termination and well partial orderings. ACM Transactions on Computational Logic, 9(3), Art. 18, 26.

    Google Scholar 

  2. Bonnet, R. (1975). On the cardinality of the set of initial intervals of a partially ordered set. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. I, pp. 189–198. Colloq. Math. Soc. János Bolyai, Vol. 10. North-Holland, Amsterdam.

    Google Scholar 

  3. Cholak, P., Marcone, A., & Solomon, R. (2004). Reverse mathematics and the equivalence of definitions for well and better quasi-orders. The Journal of Symbolic Logic, 69(3), 683–712.

    Article  Google Scholar 

  4. Clote, P. (1990). The metamathematics of Fraïssé’s order type conjecture. In K. Ambos-Spies, G. H. Müller, & G. E. Sacks (Eds.), Recursion theory week (pp. 41–56). Berlin: Springer.

    Chapter  Google Scholar 

  5. Dean, W., & Walsh, S. (2017). The prehistory of the subsystems of second-order arithmetic. Review of Symbolic Logic, 10(2), 357–396.

    Article  Google Scholar 

  6. Diestel, R. (2017). Graph theory, volume 173 of Graduate texts in mathematics. Springer, Heidelberg, 5th edn.

    Google Scholar 

  7. Dorais, F. G. (2011). Reverse mathematics of compact countable second-countable spaces. arXiv:1110.6555.

  8. Downey, R. G. (1998). Computability theory and linear orderings. In Handbook of Recursive Mathematics, Vol. 2, volume 139 of Studies in Logic and the Foundations of Mathematics, pp. 823–976. North-Holland, Amsterdam.

    Google Scholar 

  9. Erdös, P., & Tarski, A. (1943). On families of mutually exclusive sets. Annals of Mathematics, 2(44), 315–329.

    Article  Google Scholar 

  10. Fraïssé, R. (1948). Sur la comparaison des types d’ordres. C. R. Academy of Sciences Paris, 226, 1330–1331.

    Google Scholar 

  11. Fraïssé, R. (2000). Theory of relations, volume 145 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, revised edition, 2000. With an appendix by Norbert Sauer.

    Google Scholar 

  12. Friedman, H. (1975). Some systems of second order arithmetic and their use. In Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 1, pp. 235–242. Canad. Math. Congress, Montreal, Que.

    Google Scholar 

  13. Friedman, H. (1976). Systems of second order arithmetic with restricted induction, i, ii (abstracts). The Journal of Symbolic Logic, 41(2), 557–559.

    Article  Google Scholar 

  14. Friedman, H., Robertson, N., & Seymour, P. (1987). The metamathematics of the graph minor theorem. In S. G. Simpson (Ed.), Logic and combinatorics (pp. 229–261). Providence, R.I: American Mathematical Society.

    Chapter  Google Scholar 

  15. Frittaion, E., & Marcone, A. (2014). Reverse mathematics and initial intervals. Annals of Pure and Applied Logic, 165(3), 858–879.

    Article  Google Scholar 

  16. Frittaion, E., Hendtlass, M., Marcone, A., Shafer, P., & Van der Meeren, J. (2016). Reverse mathematics, well-quasi-orders, and Noetherian spaces. Review of Symbolic Logic, 55(3–4), 431–459.

    Google Scholar 

  17. Girard, J.-Y. (1987). Proof theory and logical complexity. Naples: Bibliopolis.

    Google Scholar 

  18. Goubault-Larrecq, J. (2007). On Noetherian spaces. In Proceedings of the 22nd Annual IEEE Symposium on Logic in Computer Science (LICS’07), pages 453–462, Wrocław, Poland, July 2007. IEEE Computer Society Press.

    Google Scholar 

  19. Goubault-Larrecq, J. (2013). Non-Hausdorff topology and domain theory (Vol. 22). New Mathematical Monographs Cambridge: Cambridge University Press.

    Book  Google Scholar 

  20. Harzheim, E. (2005). Ordered sets (Vol. 7), Advances in Mathematics (Springer) New York: Springer.

    Google Scholar 

  21. Hatzikiriakou, K., & Simpson, S. G. (2017). Reverse mathematics, Young diagrams, and the ascending chain condition. The Journal of Symbolic Logic, 82(2), 576–589.

    Article  Google Scholar 

  22. Higman, G. (1952). Ordering by divisibility in abstract algebras. Proceedings of the London Mathematical Society, 3(2), 326–336.

    Article  Google Scholar 

  23. Hilbert, D., & Bernays, P. (1968). Grundlagen der Mathematik I. Berlin: Springer.

    Book  Google Scholar 

  24. Hilbert, D., & Bernays, P. (1970). Grundlagen der Mathematik II. Berlin: Springer.

    Book  Google Scholar 

  25. Hirschfeldt, D. R. (2015). Slicing the truth, volume 28 of Lecture Notes Series. Institute for Mathematical Sciences. National University of Singapore. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. On the computable and reverse mathematics of combinatorial principles, Edited and with a foreword by Chitat Chong, Qi Feng, Theodore A. Slaman, W. Hugh Woodin and Yue Yang.

    Google Scholar 

  26. Hirschfeldt, D. R., & Shore, R. A. (2007). Combinatorial principles weaker than Ramsey’s theorem for pairs. The Journal of Symbolic Logic, 72(1), 171–206.

    Article  Google Scholar 

  27. Hirst, J. L. (1994). Reverse mathematics and ordinal exponentiation. Annals of Pure and Applied Logic, 66(1), 1–18.

    Article  Google Scholar 

  28. Jongh, D. H. J. de, & Parikh, R. (1977). Well-partial orderings and hierarchies. Nederl. Akad. Wetensch. Proc. Ser. A 80=Indag. Math., 39(3), 195–207.

    Google Scholar 

  29. Kříž, I., & Thomas, R. (1990). Ordinal types in Ramsey theory and well-partial-ordering theory. In Mathematics of Ramsey theory, vol. 5 of Algorithms Combin., pp. 57–95. Springer, Berlin.

    Google Scholar 

  30. Krombholz, M. (2018). Proof theory of graph minors and tree embeddings. Ph.d. thesis, University of Leeds, 2018.

    Google Scholar 

  31. Krombholz, M., & Rathjen, M., Upper bounds on the graph minor theorem. arXiv:1907.00412.

  32. Kruskal, J. B. (1960). Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. Transactions of the American Mathematical Society, 95, 210–225.

    Google Scholar 

  33. Laver, R. (1971). On Fraïssé’s order type conjecture. Annals of Mathematics, 2(93), 89–111.

    Article  Google Scholar 

  34. Laver, R. (1978). Better-quasi-orderings and a class of trees. In G.-C. Rota (Ed.), Studies in Foundations and Combinatorics (pp. 31–48). New York: Academic Press.

    Google Scholar 

  35. Lerman, M., Solomon, R., & Towsner, H. (2013). Separating principles below Ramsey’s theorem for pairs. Journal of Mathematical Logic, 13(2), 1350007, 44.

    Google Scholar 

  36. Liu, J. (2012). \({{ RT}}^2_2\) does not imply \({{ WKL}}_0\). The Journal of Symbolic Logic, 77(2), 609–620.

    Article  Google Scholar 

  37. Marcone, A. (1994). Foundations of BQO theory. Transactions of the American Mathematical Society, 345(2), 641–660.

    Article  Google Scholar 

  38. Marcone, A. (1996). On the logical strength of Nash-Williams’ theorem on transfinite sequences. In W. Hodges, M. Hyland, C. Steinhorn, & J. Truss (Eds.), Logic: from foundations to applications (pp. 327–351). New York: The Clarendon Press.

    Google Scholar 

  39. Marcone, A. (2005). Wqo and bqo theory in subsystems of second order arithmetic. Reverse Mathematics 2001 (Vol. 21, pp. 303–330)., Lecture Notes in Mathematics La Jolla, CA: Assoc. Symbol. Logic.

    Google Scholar 

  40. Marcone, A., & Montalbán, A. (2009). On Fraïssé’s conjecture for linear orders of finite Hausdorff rank. Annals of Pure and Applied Logic, 160(3), 355–367.

    Article  Google Scholar 

  41. Marcone, A., & Montalbán, A. (2011). The Veblen functions for computability theorists. The Journal of Symbolic Logic, 76(2), 575–602.

    Article  Google Scholar 

  42. Marcone, A., & Shore, R. A. (2011). The maximal linear extension theorem in second order arithmetic. Archive for Mathematical Logic, 50(5–6), 543–564.

    Article  Google Scholar 

  43. Marcone, A., Montalbán, A., & Shore, R. A. (2012). Computing maximal chains. Archive for Mathematical Logic, 51(5–6), 651–660.

    Article  Google Scholar 

  44. Montalbán, A. (2006). Equivalence between Fraïssé’s conjecture and Jullien’s theorem. Annals of Pure and Applied Logic, 139(1–3), 1–42.

    Article  Google Scholar 

  45. Montalbán, A. (2007). Computable linearizations of well-partial-orderings. Order, 24(1), 39–48.

    Article  Google Scholar 

  46. Montalbán, A. (2011). Open questions in reverse mathematics. Bulletin of Symbolic Logic, 17(3), 431–454.

    Article  Google Scholar 

  47. Montalbán, A. (2017). Fraïssé’s conjecture in \(\Pi _1^1\)-comprehension. International Journal of Mathematics, 17(2), 1750006, 12.

    Google Scholar 

  48. Mummert, C. (2006). Reverse mathematics of MF spaces. Journal of Mathematical Logic, 6(2), 203–232.

    Article  Google Scholar 

  49. Nash-Williams, C. St, & J. A., (1963). On well-quasi-ordering finite trees. Proceedings of the Cambridge Philosophical Society, 59(833–835), 1963.

    Google Scholar 

  50. Nash-Williams, C. St, & J. A.,. (1965). On well-quasi-ordering infinite trees. Proceedings of the Cambridge Philosophical Society, 61, 697–720.

    Google Scholar 

  51. Nash-Williams, C. St, & J. A.,. (1968). On better-quasi-ordering transfinite sequences. Proceedings of the Cambridge Philosophical Society, 64, 273–290.

    Google Scholar 

  52. Patey, L. (2016). Partial orders and immunity in reverse mathematics. In Pursuit of the Universal, volume 9709 of Lecture Notes in Computer Science, pp. 353–363. Springer, [Cham].

    Google Scholar 

  53. Rathjen, M., & Weiermann, A. (1993). Proof-theoretic investigations on Kruskal’s theorem. Annals of Pure and Applied Logic, 60(1), 49–88.

    Article  Google Scholar 

  54. Rathjen, M., & Weiermann, A. (2011). Reverse mathematics and well-ordering principles. Computability in Context (pp. 351–370). London: Imperial College Press.

    Google Scholar 

  55. Schmidt, D. (1979). Well-partial Orderings and their maximal order types. Habilitationschrift: Heidelberg University.

    Google Scholar 

  56. Schütte, K., & Simpson, S. G. (1985). Ein in der reinen Zahlentheorie unbeweisbarer Satz über endliche Folgen von natürlichen Zahlen. Archive for Mathematical Logik Grundlag, 25(1–2), 75–89.

    Article  Google Scholar 

  57. Seetapun, D., & Slaman, T. A. (1995). On the strength of Ramsey’s theorem. Notre Dame Journal of Formal Logic, 36(4), 570–582, 1995. Special Issue: Models of arithmetic.

    Google Scholar 

  58. Shore, R. A. (1993). On the strength of Fraïssé’s conjecture. In J. N. Crossley, J. B. Remmel, R. A. Shore, & M. E. Sweedler (Eds.), Logical methods (pp. 782–813). Boston, MA: Birkhäuser.

    Google Scholar 

  59. Simpson, S. G., & (1985). Bqo-theory and Fraïssé’s conjecture. Chapter 9, Mansfield, R., & Weitkamp, G.,. (1985). Recursive aspects of descriptive set theory. New York: Oxford University Press.

    Google Scholar 

  60. Simpson, S. G. (1985). Nonprovability of certain combinatorial properties of finite trees. In L. A. Harrington, M. D. Morley, A. Ščedrov, & S. G. Simpson (Eds.), Harvey Friedman’s research on the foundations of mathematics (pp. 87–117). Amsterdam: North-Holland.

    Chapter  Google Scholar 

  61. Simpson, S. G. (1988). Ordinal numbers and the Hilbert basis theorem. The Journal of Symbolic Logic, 53(3), 961–974.

    Article  Google Scholar 

  62. Simpson, S. G. (2009). Subsystems of second order arithmetic. Perspectives in Logic. Cambridge University Press, Cambridge; Association for Symbolic Logic, Poughkeepsie, NY, second edition.

    Google Scholar 

  63. Thomassen, C. (1995). Embeddings and minors. In R. L. Graham, M. Grötschel, & L. Lovász (Eds.), Handbook of combinatorics (Vol. 1, pp. 301–349). Amsterdam: Elsevier Science.

    Google Scholar 

  64. Towsner, H. (2013). Partial impredicativity in reverse mathematics. The Journal of Symbolic Logic, 78(2), 459–488.

    Article  Google Scholar 

  65. Towsner, H. (2016). Constructing sequences one step at a time. arXiv:1609.05509.

  66. Weyl, H. (1918). Das Kontinuum: Kritische Untersuchungen über die Grundlagen der Analysis. Leipzig: Veit.

    Google Scholar 

  67. Wolk, E. S. (1967). Partially well ordered sets and partial ordinals. Fundamenta Mathematicae, 60, 175–186.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Marcone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marcone, A. (2020). The Reverse Mathematics of wqos and bqos. In: Schuster, P., Seisenberger, M., Weiermann, A. (eds) Well-Quasi Orders in Computation, Logic, Language and Reasoning. Trends in Logic, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-030-30229-0_8

Download citation

Publish with us

Policies and ethics