Skip to main content

Physical Layer Secrecy Enhancement for Non-orthogonal Multiple Access Cooperative Network with Artificial Noise

  • Conference paper
  • First Online:
Industrial Networks and Intelligent Systems (INISCOM 2019)

Abstract

In this paper, the physical layer secrecy performance of non-orthogonal multiple access (NOMA) in a downlink cooperative network is studied. This considered system consists of one source, multiple legitimate user pairs and presenting an eavesdropper. In each pair, the better user forwards the information from the source to the worse user by using the decode-and-forward (DF) scheme and assuming that the eavesdropper attempts to extract the worse user’s message. We propose the artificial noise - cooperative transmission scheme, namely ANCOTRAS, to improve the secrecy performance of this considered system. In order to evaluate the effectiveness of this proposed scheme, the lower bound and exact closed-form expressions of secrecy outage probability are derived by using statistical characteristics of signal-to-noise ratio (SNR) and signal-to-interference-plus-noise ratio (SINR). Moreover, we investigate the secrecy performance of this considered system according to key parameters, such as power allocation ratio, average transmit power and number of user pair to verify our proposed scheme. Finally, Monte- Carlo simulation results are provided to confirm the correctness of the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ding, Z., Yang, Z., Fan, P., Poor, H.V.: On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Process. Lett. 21(12), 1501–1505 (2014)

    Article  Google Scholar 

  2. Dai, L., Wang, B., Yuan, Y., Han, S., Chih-Lin, I., Wang, Z.: Nonorthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag. 53(9), 74–81 (2015)

    Article  Google Scholar 

  3. Shimojo, T., Umesh, A., Fujishima, D., Minokuchi, A.: Special articles on 5G technologies toward 2020 deployment. NTT DOCOMO Tech. J. 17(4), 50–59 (2016)

    Google Scholar 

  4. Islam, S.M.R., Avazov, N., Dobre, O.A., Kwak, K.S.: Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges. IEEE Commun. Surv. Tutorials 19(2), 721–742 (2017)

    Article  Google Scholar 

  5. Lee, S., Duong, T.Q., da Costa, D.B., Ha, D.B., Nguyen, S.Q.: Underlay cognitive radio networks with cooperative non-orthogonal multiple access. IET Commun. 12(3), 359–366 (2018)

    Article  Google Scholar 

  6. Suraweera, H.A., Karagiannidis, G.K., Smith, P.J.: Performance analysis of the dual-hop asymmetric fading channel. IEEE Trans. Wirel. Commun. 8(6), 2783–2788 (2009)

    Article  Google Scholar 

  7. Kim, K.J., Duong, T.Q., Poor, H.V.: Performance analysis of cyclic prefixed single-carrier cognitive amplify-and-forward relay systems. IEEE Trans. Wirel. Commun. 12(1), 195–205 (2013)

    Article  Google Scholar 

  8. Ding, Z., Peng, M., Poor, H.V.: Cooperative non-orthogonal multiple access in 5G systems. IEEE Commun. Lett. 19(8), 1462–1465 (2015)

    Article  Google Scholar 

  9. Kim, J.B., Song, M.S., Lee, I.H.: Achievable rate of best relay selection for non-orthogonal multiple access-based cooperative relaying systems. In: International Conference on Information and Communication Technology Convergence (ICTC), Jeju, pp. 960–962. IEEE, South Korea (2016)

    Google Scholar 

  10. Liu, Y., Ding, Z., Elkashlan, M., Poor, H.V.: Cooperative nonorthogonal multiple access with simultaneous wireless information and power transfer. IEEE J. Sel. Areas Commun. 34(4), 936–953 (2016)

    Google Scholar 

  11. Ha, D.B., Nguyen, Q.S.: Outage performance of energy harvesting DF relaying NOMA networks. Mob. Netw. Appl. 23(6), 1572–1585 (2017)

    Article  Google Scholar 

  12. Tran, D.D., Tran, H.V., Ha, D.B., Kaddoum, G.: Cooperation in NOMA networks under limited user-to-user communications: solution and analysis. In: IEEE Wireless Communications and Networking Conference (WCNC), 15–18 April 2018, Barcelona, Spain (2018)

    Google Scholar 

  13. Ha, D.B., Duong, T.Q., Tran, D.D., Zepernick, H.J., Vu, T.T.: Physical layer secrecy performance over Rayleigh/Rician fading channels. In: The 2014 International Conference on Advanced Technologies for Communications (ATC 2014), 15–17 October 2014, pp. 113–118, Hanoi, Vietnam (2013)

    Google Scholar 

  14. Wyner, A.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)

    Article  MathSciNet  Google Scholar 

  15. Bloch, M., Barros, J., Rodrigues, M.R., McLaughlin, S.W.: Wireless information-theoretic security. IEEE Trans. Inf. Tech. 54(6), 2515–2534 (2008)

    Article  MathSciNet  Google Scholar 

  16. Ng, D.W.K., Schober, R.: Resource allocation for secure communication in systems with wireless information and power transfer. In: IEEE Globecom Workshops, Atlanta, USA, pp. 1251–1257 (2013)

    Google Scholar 

  17. Ha, D.B., Van, P.T., Vu, T.T.: Physical layer secrecy performance analysis over Rayleigh/Nakagami fading channels. In: The World Congress on Engineering and Computer Science 2014 (WCECS2014), 22–24 October 2014, San Francisco, USA (2014)

    Google Scholar 

  18. Ha, D.B., Vu, T.T., Duy, T.T., Bao, V.N.Q.: Secure cognitive reactive decode-and-forward relay networks: with and without eavesdropper. Wirel. Pers. Commun. (WPC) 85(4), 2619–2641 (2015)

    Article  Google Scholar 

  19. Tran, D.D., Ha, D.B.: Secrecy performance analysis of QoS-based non-orthogonal multiple access networks over Nakagami-m fading. In: The International Conference on Recent Advances in Signal Processing, Telecommunications and Computing (SigTelCom), HCMC, Vietnam (2018)

    Google Scholar 

  20. Lei, H., Zhang, J., Park, K.H., Xu, P., Ansari, I.S., Pan, G.: On secure noma systems with transmit antenna selection schemes. IEEE Access 5, 17450–17464 (2017)

    Article  Google Scholar 

  21. Liu, Y., Qin, Z., Elkashlan, M., Gao, Y., Hanzo, L.: Enhancing the physical layer security of nonorthogonal multiple access in large-scale networks. IEEE Trans. Wirel. Commun. 16(3), 1656–1672 (2017)

    Article  Google Scholar 

  22. Lv, L., Ding, Z., Ni, Q., Chen, J.: Secure MISO-NOMA transmission with artificial noise. IEEE Trans. Veh. Technol. 67(7), 6700–6705 (2018)

    Article  Google Scholar 

  23. Chen, J., Yang, L., Alouini, M.S.: Physical layer security for cooperative NOMA systems. IEEE Trans. Veh. Technol. 67(5), 4645–4649 (2018)

    Article  Google Scholar 

  24. Men, J., Ge, J.: Performance analysic of non-orthogonal multiple access in downlink cooperative network. IET Commun. 9(18), 2267–2273 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van-Long Nguyen .

Editor information

Editors and Affiliations

Appendix A

Appendix A

Here, we derive the expression of SOP at \(D_m\) in the case of with AN.

$$\begin{aligned} SOP_3= & {} \Pr \left( \frac{b_4X_1}{b_3X_1 + 1}<\gamma _t\right) + \left( 1-\Pr \left( \frac{b_4X_1}{b_3X_1 + 1}<\gamma _t\right) \right) \Pr \left( \frac{1+\gamma _{mn}}{1 + \gamma _{D_mE}}< 2^{R_S/(1-\alpha )}\right) \nonumber \\= & {} \varPhi _1 + (1-\varPhi _1)\int _{0}^{\infty }{F_{U_1}(2^{R_S/(1-\alpha )}(1+y)-1)f_{U_2}(y)dy} \nonumber \\= & {} \varPhi _1 + (1-\varPhi _1) \Bigg [ 1 - \frac{M!}{(M-n)!(n-1)!}\overset{n-1}{\underset{k=0}{\sum }}C^{n-1}_{k}(-1)^k\nonumber \\\times & {} \int _{0}^{\infty }\frac{c_1\lambda _{mn}}{c_3\lambda _{SDn}(2^{R_S/(1-\alpha )}(1+y)-1)+c_1\lambda _{mn}(M-n+k+1)}e^{-\frac{(2^{R_S/(1-\alpha )}(1+y)-1)}{c_1\lambda _{mn}}}\nonumber \\\times & {} \left( \frac{c_2c_4\lambda _{DmE}\lambda _{SE}}{(c_4\lambda _{SE}y+c_2\lambda _{DmE})^2}+\frac{1}{(c_4\lambda _{SE}y+c_2\lambda _{DmE})}\right) e^{-\frac{y}{c_2\lambda _{DmE}}}dy \Bigg ]\nonumber \\= & {} \varPhi _1 + (1-\varPhi _1)(1- \frac{M!}{(M-n)!(n-1)!}\overset{n-1}{\underset{k=0}{\sum }}C^{n-1}_{k}(-1)^k(\varPhi _2+\varPhi _3)), \end{aligned}$$
(30)

where \(\gamma _t\) is the threshold to detect \(s_n\) and \(\varPhi _1, \varPhi _2, \varPhi _3\) are calculated as follows

$$\begin{aligned} \varPhi _1= & {} F_{X_1}\left( \frac{\gamma _t}{b_4 - b_3\gamma _t}\right) \\= & {} \left\{ {\begin{array}{*{20}{c}} {\frac{M!}{(M-m)!(m-1)!}\overset{m-1}{\underset{k=0}{\sum }}(-1)^k C^{m-1}_k\frac{1}{M-m+k+1}\left[ 1 - e^{- \frac{\gamma _t(M-m+k+1)}{(b_4 - b_3\gamma _t)\lambda _{SDm}}}\right] ,\mathrm{{ }}}&{}{{\gamma _t} < {\frac{a_n}{a_m}}}\\ {1,\mathrm{{ }}}&{}{{\gamma _t} > \frac{a_n}{a_m}} \end{array}} \right. \end{aligned}$$
$$\begin{aligned} \varPhi _2= & {} \int _{0}^{\infty }\frac{c_1\lambda _{mn}}{c_3\lambda _{SDn}(2^{R_S/(1-\alpha )}(1+y)-1)+c_1\lambda _{mn}(M-n+k+1)}e^{-\frac{(2^{R_S/(1-\alpha )}(1+y)-1)}{c_1\lambda _{mn}}}\nonumber \\\times & {} \frac{c_2c_4\lambda _{DmE}\lambda _{SE}}{(c_4\lambda _{SE}y+c_2\lambda _{DmE})^2}e^{-\frac{y}{c_2\lambda _{DmE}}}dy\nonumber \\= & {} c_1\lambda _{mn}c_2c_4\lambda _{DmE}\lambda _{SE}e^{-\frac{2^{R_S/(1-\alpha )}-1}{c_1\lambda _{mn}}}\!\int _{0}^{\infty }\!\frac{1}{(ay+b)^2}\frac{1}{cy+d}e^{-\left( \frac{1}{c_2\lambda _{DmE}}+\frac{2^{R_S/(1-\alpha )}}{c_1\lambda _{mn}}\right) y}dy\nonumber \\= & {} c_1\lambda _{mn}c_2c_4\lambda _{DmE}\lambda _{SE}e^{-\frac{2^{R_s}-1}{c_1\lambda _{mn}}}\Bigg [\int _{0}^{\infty }\frac{E_1}{cy+d}e^{-\mu y}dy+\int _{0}^{\infty }\frac{E_2}{ay+b}e^{-\mu y}dy \nonumber \\+ & {} \int _{0}^{\infty }\frac{E_3}{(ay+b)^2}e^{-\mu y}dy\Bigg ]\nonumber \\= & {} c_1\lambda _{mn}c_2c_4\lambda _{DmE}\lambda _{SE}e^{-\frac{2^{R_s}-1}{c_1\lambda _{mn}}}\Bigg [\frac{E_1}{c}e^{\frac{d}{c}\mu }\varGamma (0,\frac{d}{c}\mu )+\frac{E_2}{a}e^{\frac{b}{a}\mu }\varGamma (0,\frac{b}{a}\mu ) \nonumber \\+ & {} \frac{E_3}{a^2}\mu e^{\frac{b}{a}\mu }\varGamma (-1,\frac{b}{a}\mu )\Bigg ]. \end{aligned}$$
(31)
$$\begin{aligned} \varPhi _3= & {} \int _{0}^{\infty }\frac{c_1\lambda _{mn}}{c_3\lambda _{SDn}(2^{R_s}(1+y)-1)+c_1\lambda _{mn}}e^{-\frac{(2^{R_s}(1+y)-1)}{c_1\lambda _{mn}}}\\\times & {} \frac{1}{(c_4\lambda _{SE}y+c_2\lambda _{DmE})}e^{-\frac{y}{c_2\lambda _{DmE}}}dy\\= & {} c_1\lambda _{mn}e^{-\frac{2^{R_s}-1}{c_1\lambda _{mn}}}\int _{0}^{\infty }\frac{1}{ay+b}\frac{1}{cy+d}e^{-\left( \frac{1}{c_2\lambda _{DmE}}+\frac{2^{R_s}}{c_1\lambda _{mn}}\right) y}dy\\= & {} c_1\lambda _{mn}e^{-\frac{2^{R_s}-1}{c_1\lambda _{mn}}}\Bigg [\int _{0}^{\infty }\frac{F_1}{cy+d}e^{-\mu y}dy+\int _{0}^{\infty }\frac{F_2}{ay+b}e^{-\mu y}dy\Bigg ]\\= & {} c_1\lambda _{mn}e^{-\frac{2^{R_s}-1}{c_1\lambda _{mn}}}\Bigg [\frac{F_1}{c}e^{\frac{d}{c}\mu }\varGamma (0,\frac{d}{c}\mu )+\frac{F_2}{a}e^{\frac{b}{a}\mu }\varGamma (0,\frac{b}{a}\mu )\Bigg ] \end{aligned}$$

Denoted that \(a = c_4\lambda _{SE}, b = c_2\lambda _{DmE}, c = c_3\lambda _{SDn}2^{R_S/(1-\alpha )}, d = c_3\lambda _{SDn}(2^{R_S/(1-\alpha )}-1)+c_1\lambda _{mn}(M-n+k+1), \mu = \frac{2^{R_S/(1-\alpha )}}{c_1\lambda _{mn}}+\frac{1}{c_2\lambda _{DmE}}, E_1 = \frac{c^2}{(ad - bc)^2}, E_2 = - \frac{ac}{(ad - bc)^2}, E_3 = \frac{a}{(ad - bc)}, F_1 = - \frac{c}{ad-bc}, F_2 = \frac{a}{ad-bc}\).

Substituting \(\varPhi _1, \varPhi _2, \varPhi _3\) into (30), we obtain the closed-form expression of SOP for the link \(D_m-D_n\) in the case of using AN. This concludes the proof.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, VL., Ha, DB. (2019). Physical Layer Secrecy Enhancement for Non-orthogonal Multiple Access Cooperative Network with Artificial Noise. In: Duong, T., Vo, NS., Nguyen, L., Vien, QT., Nguyen, VD. (eds) Industrial Networks and Intelligent Systems. INISCOM 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 293. Springer, Cham. https://doi.org/10.1007/978-3-030-30149-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30149-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30148-4

  • Online ISBN: 978-3-030-30149-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics